Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

Содержание

Нервная ткань

Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

Часть вторая – клеточный состав нервной ткани, характеристика нервных и глиальных клеток.

Клеточный состав нервной ткани

Нейроны, или нейроциты, — специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки).

Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система.

В зависимости от функции в рефлекторной дуге различают три типа нейронов:

  • афферентные
  • ассоциативные
  • эфферентные

Афферентные (или рецепторные, чувствительные) нейроны воспринимают импульс, эфферентные (или двигательные) передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные (или вставочные) осуществляют связь между нейронами.

Подавляющее большинство нейронов (99,9%) – ассоциативные.

Нейроны отличаются большим разнообразием форм и размеров. Например, диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов:

  • биполярные,
  • мультиполярные (большинство) и
  • униполярные нейроны.

Униполярные нейроны имеют только аксон (у высших животных и человека обычно не встречаются). Биполярные – имеют аксон и один дендрит. Мультиполярные нейроны (подавляющее большинство нейронов) имеют один аксон и много дендритов.

Разновидностью биполярных нейронов является псевдо-униполярный нейрон, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов – мультиполярные. Их формы чрезвычайно разнообразны.

Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем нейрона.

Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (т.е. гранулярной эндоплазматической сети и полисом), митохондрии, большое количество нейротубул (или микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз.

Аксон — это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Подавляющее большинство нейронов человека содержит одно округлое светлое ядро, расположенное в центре клетки. Двуядерные и тем более многоядерные нейроны встречаются крайне редко.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс.

Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ.

Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку.

Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1—2 мс (т.н.

рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.

Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.

При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции – тигроид, тельца Ниссля).

Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов.

Каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков.

Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.

Возрастные изменения нейронов сопровождаются накоплением липофусцина, разрушением крист митохондрий. Липофусцин — «пигмент старения» — желто-бурого цвета липопротеидной природы, представляющий собой остаточные тельца (т.е. телолизосомы) с продуктами непереваренных структур.

Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы.

Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны в виде нитей — нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно.

Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин.

Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки).

Обе транспортные системы присутствуют как в аксонах, так и в дендритах.

Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов.

Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички.

АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении.

Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы.

Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Отдельной разновидностью нейронов являются секреторные нейроны. Способность синтезировать и секретировать биологически активные вещества, в частности нейромедиаторы, свойственна всем нейроцитам.

Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, — секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга.

В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся непосредственно в кровь (например, с помощью т.н.

аксо-вазальных синапсов) или же в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

Нейроглия

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.

Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы.

Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости.

Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка.

Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).

Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов – протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты – преимущественно в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.

Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя (изолируя) их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд.

Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.

Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов.

В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

Микроглия

Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы.

Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца.

Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов.

Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему.

Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия.

В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы.

Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.

Рассмотренные выше глиальные элементы относились к центральной нервной системе.

Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).

Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

Некоторые термины из практической медицины:

  • нейрокриния, нейросекреция — продукция гормонов нервной тканью (секреторными нейронами), напр. ядрами межуточного мозга;
  • нейроксантома — локальное дистрофическое изменение нервной ткани, характеризующееся отложением холестерина в глиоцитах; наблюдается при болезни Хенда-Шюллера-Крисчена;
  • нейрон формальный — математическая модель нейрона, отображающая его свойство генерировать нервный импульс лишь при внешних воздействиях, не меньших некоторой величины (порога); Формальный нейрон послужил основой для создания различных вычислительных и логических кибернетических схем;

 

Источник: https://morphology.dp.ua/_mp3/neural2.php

Нервная ткань: строение, функции и клетки нервной ткани

Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии.

Нервные клетки ответственны за восприятие сигнала, проведение импульса и его реализацию, а глиальные клетки выполняют трофические (питание), опорные функции для нейронов, а также защитные и изолирующие функции для нервных волокон.

На всем протяжении своего существования клетки глии сохраняют способность к делению. Нейроны же утрачивают эту способность. Поэтому при заболеваниях, сопровождающихся потерей нервных клеток, глиальные клетки могут замещать нейроны.

Нейроны соединяются между собой посредством синапсов, образуя цепи, или узлы нейронов. Размер и форма нейронов варьируют в широких пределах, однако, основная структура их одинакова. 

Строение нейрона

В соответствии с направлением проведения сигнала нервная клетка подразделяется на три сегмента: дендрит, аксон и перикарион (соматическая клетка).

Дендриты представляют собой древовидно ветвящиеся отростки, обладающие специфическими точками контакта (синапсами), которые воспринимают сигналы от других нейронов и передают их в перикарион. Оттуда по осевому цилиндру сигнал передается на воспринимающий орган (например, скелетную мышцу) или на другой нейрон.

Аксон – длинный отросток (до 100 см), окружен особой миелиновой оболочкой Роль миелиновой оболочки заключается в стимуляции передачи сигнала от клетки к клетке.

Перикарион (соматическая клетка) обладает различной формой и размерами. Наряду с ядром перикарион содержит несколько органелл, а также многочисленные нейротрубочки и нейрофиламенты. Через эти нейротрубочки осуществляется транспорт нерастворимых белков.

По количеству дендритов и типу их ветвления нервные клетки разделяются на несколько типов. Униполярный нейрон обладает одним аксоном.

В биполярном нейроне аксон и дендрит отходят от противоположных концов клетки. В ложноуниполярном нейрон образуется из биполярного нейрона путем слияния аксона и дендрита вблизи около тела клетки.

В мультиполярном нейроне из клетки выходят многочисленные дендриты вместе с одним аксоном.

Клетки глии (нейроглии)

В соединительной ткани периферической и центральной нервной системы различают следующие типы клеток: – шванновские клетки (образуют миелиновую оболочку); – амфициты (образуют оболочку нервных клеток, спинальных ганглий и автономных ганглий); – астроциты (отчасти выполняют опорную функцию); – микроглия (обладают способностью к фагоцитозу); – эпендимоциты (выстилают полости головного и спинного мозга);

– секреторные клетки сосудистого сплетения (вырабатывают жидкость, предохраняющую головной и спинной мозг от механических воздействий).

Нервы

Этот термин используется только для периферической нервной системы. Для головного и спинного мозга применяется название тракт (центральный путь). Нерв состоит из нескольких пучков нервных волокон. В одном нерве могут находиться как чувствительные (афферентные), так и двигательные (эфферентные) волокна.

Поэтому такой нерв содержит сотни индивидуальных аксонов, заключенных в миелиновые оболочки, а также дополнительный слой соединительной ткани. В свою очередь, пучки волокон окружены еще одним слоем соединительной ткани.

Все оболочки обеспечивают не только механическую защиту нерва, но и служат для питания волокон за счет кровеносных сосудов, находящихся в нерве.

В отличие от аксонов в ЦНС, периферические нервы способны к регенерации после повреждений, даже если нерв перерезан. Это происходит при сшивании концов нерва.

После перерезки нерва, в первую очередь, дегенерирует часть аксона, отделенная от тела клетки, а шванновские клетки служат резервом для регенерации аксона. Регенерирующий аксон растет со скоростью 1-2 мм в день в направлении иннервируемого органа (например, мышцы).

Для полной реиннервации необходимо несколько месяцев. После ампутации конечности аксоны начинают расти во всех направлениях и образуют пролиферирующую массу, так называемую ампутационную нейрому.

Нервный импульс (потенциал действия)

Способность отвечать возбуждением на внешние сигналы характерна для всех клеток. Быстрая передача сигналов посредством специализированных структур (аксонов) присуща только нервным клеткам. Для нервной системы животных и человека сигнал, или потенциал действия, представляет собой универсальное средство сообщения.

Существенным параметром такой связи является не интенсивность одиночного потенциала действия, а количество полученных, обработанных и переданных нервным волокном сигналов в единицу времени (частота). Таким образом, язык, или код нейрона, выражается частотой сигнала (до 500 импульсов в секунду).

Генерация потенциала действия в нервной клетке зависит от отрицательного потенциала покоя, который характерен почти для всех клеток и выражается разностью электрических потенциалов между наружной клеточной мембраной и содержимым клетки.

При возбуждении нервной клетки раздражителями электрической или химической природы происходит кратковременная потеря положительного потенциала на ее мембране, и она заряжается слабо отрицательно. Мембранный потенциал меняется от -60 мВ (потенциал покоя) до +20 мВ. Менее чем за 1 мс исходный потенциал восстанавливается.

Поскольку клетка теряет первоначальную поляризацию, этот процесс называется деполяризацией. Возвращение клетки к исходному состоянию носит название реполяризации.

Передача импульса с аксона на другой нейрон происходит через синапс, при участии особых веществ – нейромедиаторов. Они высвобождаются из специальных синаптических пузырьков. Нейромедиаторы диффундируют через синаптическую щель и вызывают деполяризацию постсинаптической мембраны, способствующую дальнейшей передаче импульса.
 

Скорее запишись на курсы профессионального массажа

в Санкт-Петербурге!

Источник: https://www.sportmassag.ru/1/page6175.html

Строение нервной ткани. Ее функции и свойства

Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).

Основные функции нервной ткани

  1. Восприятие раздражения;
  2. формирование нервного импульса;
  3. быстрая доставка возбуждения к центральной нервной системе;
  4. хранение информации;
  5. выработка медиаторов (биологически активных веществ);
  6. адаптация организма к переменам внешней среды.

Свойства нервной ткани

  • Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
  • Торможение — предотвращает возникновение возбуждения или ослабляет его
  • Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
  • Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.

Строение и морфологическая характеристика нервных тканей

Строение нейрона

Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков.

Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м.

Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.

До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп.

Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума.

Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.

Отростки делятся на два типа – это дендриты и аксоны.

Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.

Строение дендрита. У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.

По количеству отростков нейроциты делятся на:

  • униполярные (есть только один отросток, аксон);
  • биполярные (присутствует и аксон, и дендрит);
  • псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
  • мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).

Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.

Химический состав нервной ткани

Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.

Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.

В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.

Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).

Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.

Оцените, пожалуйста, статью. Мы старались:) (33 4,61 из 5)
Загрузка…

Источник: https://animals-world.ru/nervnaya-tkan/

Нервная ткань: нейроны и глиальные клетки (глия)

Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

В курсе лекций «Анатомия ЦНС для психологов» я уже писала об анатомической терминологии и нервной системе. В этой статье я решила рассказать о нервной ткани, ее особенностях, видах нервной ткани, классификациях нейронов, нервных волокон, типах глиальных клеток и многом другом.

Хочу напомнить, что все статьи в разделе «Анатомия ЦНС», я пишу именно для психологов, учитывая их программу подготовки. Я по своему опыту помню, как сложно и непривычно было изучать подобные темы во время своей учебы. Поэтому я стараюсь изложить весь материал наиболее понятно.

Для начала, я советую посмотреть небольшое видео, в котором рассказывается о различных тканях человека. Но нас будет интересовать именно нервная ткань. В более красочном и наглядном виде вам будет легче усвоить основы, а потом вы сможете расширить свои знания.

Основной тканью, из которой образована нервная система является нервная ткань, которая состоит из клеток и межклеточного вещества.
Ткань — это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям.

Нервная ткань имеет эктодермальное происхождение. Нервная ткань отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество. Межклеточное вещество является производной глиальной клетки, состоит из волокон и аморфного вещества.

Функцией нервной ткани является обеспечение получения, переработки и хранения информации из внешней и внутренней среды, а также регуляция и координация деятельности всех частей организма.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции ЦНС. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в соотношении 10:1 соответственно.

Каждый нейрон имеет расширенную центральную часть: тело — сому и отростки — дендриты и аксоны. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.

Отростки могут быть длинными и короткими. Длинные отростки нейронов называются нервными волокнами. Большинство дендритов (дендрон — дерево) короткие, сильно ветвящиеся отростки. Аксон (аксис — отросток) чаще длинный, мало ветвящийся отросток.

Нейроны

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

Каждый нейрон имеет только 1 аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки — коллатерали. Окончания аксона, как правило, ветвятся, и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным (аксонным) холмиком.

По отношению к отросткам сома нейрона выполняет трофическую функцию, регулируя обмен веществ. Нейрон обладает признаками, общими для всех клеток: имеет оболочку, ядро и цитоплазму, в которой находятся органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и т.д.).

Кроме того, в нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.

Кроме того, отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии. Взрослые нейроны не способны к делению.

Виды нейронов

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.

По количеству отростков (по строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются;
2.

Псевдоуниполярные нейроны (ложноодноотростчатые), такие нейроны имеют Т-образный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3. Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон (т.е.

2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4. Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е.

много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза.

Вместо них в организме человека имеются псевдоуниполярные клетки, у которых единственный аксон разделяется на 2 ветви сразу же после выхода из тела клетки.

Биполярные нейроны имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны составляют большинство клеток нервной системы.

По выполняемым функциям нейроны бывают:
1. Афферентные (рецепторные, чувствительные) нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях (спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.

Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.

Пример чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи.

2. Эфферентные (эффекторные, секреторные, двигательные) нейроны регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы.

Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

Пример двигательных нейронов: мотонейрон спинного мозга.

Тела чувствительных нейронов лежат вне спинного мозга, а двигательные нейроны лежат в передних рогах спинного мозга.

3. Вставочные (контактные,интернейроны, ассоциативные, замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.

Цепь нейронов из чувствительного, вставочного и эфферентного получила название рефлекторной дуги. Вся деятельность нервной системы, по определению И.М. Сеченова, носит рефлекторный характер («рефлекс» – обозначает отражение).

По эффекту, который нейроны оказывают на другие клетки:
1. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.

Нервные волокна и нервы

Нервные волокна — это покрытые глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. По ним нервные импульсы могут передаваться на большие расстояния (до метра).

Классификация нервных волокон основана на морфологических и функциональных признаках.

По морфологическим признакам различают:
1. Миелинизированные (мякотные) нервные волокна — это нервные волокна, имеющие миелиновую оболочку;
2. Немиелинизированные (безмякотные) нервные волокна — это волокна, не имеющие миелиновой оболочки.

По функциональным признакам различают:
1. Афферентные (чувствительные) нервные волокна;
2. Эфферентные (двигательные)нервные волокна.

Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв — это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение.

Различают спинномозговые нервы, связанные со спинным мозгом (31 пара), и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы (см. таблицу ниже).

В чувствительных нервах преобладают афферентные волокна, в двигательных — эфферентные, в смешанных — количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов.

Список черепно-мозговых нервов с обозначением доминирующих волокон

I пара — обонятельные нервы (чувствительные);II пара — зрительные нервы (чувствительные);III пара — глазодвигательные (двигательные);IV пара — блоковые нервы (двигательные);V пара — тройничные нервы (смешанные);VI пара — отводящие нервы (двигательные);VII пара — лицевые нервы (смешанные);VIII пара —  вестибуло-кохлеарные нервы (чувствительные);IX пара — языкоглоточные нервы (смешанные);X пара — блуждающие нервы (чувствительные);XI пара — добавочные нервы (двигательные);

XII пара — подъязычные нервы (двигательные).

Источник: https://impsi.ru/anatomy-of-the-cns/nervnaya-tkan-nejrony-i-glialnye-kletki-gliya/

Биполярные нейроны: морфология, расположение и функции

Биполярные нейроны. Нервная ткань. мультиполярный нейрон содержит

Нейроны – это клетки, которые позволяют передавать электрические импульсы через нервную систему. Они могут специализироваться на приеме сенсорных стимулов или сокращении мышц, помимо других функций, и они подразделяются на несколько классов в зависимости от количества дендритов и аксонов, которые их образуют.

В этой статье мы поговорим о морфология, расположение и функции биполярных нейронов , которые характеризуются наличием аксона и дендрита. Мы также опишем основные аспекты остальных типов клеток: униполярную, псевдоуниполярную, мультиполярную и анаксоническую.

  • Статья по теме: «Типы нейронов: характеристики и функции»

Морфология биполярных нейронов

Сома биполярных нейронов имеет два цитоплазматических расширения, которые в свою очередь также разветвлены. Одно из этих расширений действует как дендрит Это позволяет получать электрохимические импульсы, посылаемые пресинаптическими нейронами, а другой – как аксон, передавая стимуляцию, генерируемую нейронным телом, другим клеткам.

Биполярные нейроны чаще встречаются в центральной нервной системе человека, чем униполярные нейроны, хотя намного реже, чем многополярные нейроны. В отличие от последних, которые действуют как моторные нейроны и как интернейроны, биполярные они в основном выполняют функцию сенсорных нейронов .

В дополнение к тому, что биполярные нейроны имеют особенно удлиненную форму по сравнению с однополярными, более округлыми, и многополярными, которые во многих случаях сравнивались, помимо того, что они характеризуются разделением между двумя их расширениями, это является следствием этого факта. со звездами

Помимо того, что биполярные нейроны относительно распространены в некоторых областях тела человека, особенно в сенсорных путях, их очень много в спинномозговых ганглиях рыб , У людей также есть биполярные нейроны в этом разделе спинного мозга во время эмбрионального развития.

Расположение и основные функции

Биполярные нейроны специализируются на передаче сенсорной стимуляции; это означает, что они являются сенсорными нейронами. Независимо от того, находятся ли они в зрительной системе, в слухово-вестибулярном или обонятельном, их функция всегда связана с этой задачей.

1. В сетчатке

Средний слой сетчатки образован биполярными нейронами которые модулируют импульсы, получаемые фоторецепторами (палочки и колбочки), прежде чем они достигнут ганглиозных клеток; Они в свою очередь соединяют сетчатку с зрительным нервом, который посылает сигналы в мозг. Поэтому действие биполярных нейронов является основополагающим для зрения.

  • Статья по теме: «Типы нейронов: характеристики и функции»

2. В вестибулохохлярном нерве

Вестибулярная и улитковая ветви восьмого черепного нерва Они состоят из биполярных клеток. В то время как вестибулярная ветвь передает информацию о балансе в мозг, улитка связана со слухом. Биполярные нейроны расположены в вестибулярном ганглии, а их аксоны простираются до полукруглых каналов.

3. В обонятельном эпителии

Биполярные нейроны выполняют функцию Рецепторы запаха в обонятельном эпителии , расположенный на крыше носовой полости. Дендриты этих нейронов представляют реснички, которые сохраняют молекулы запаха в слизистой оболочке. Присоединяясь к ним, нейрон передает электрические импульсы обонятельной луковице через зубчатую пластинку черепа.

4. В спинномозговых ганглиях

Во время эмбрионального развития можно обнаружить биполярные нейроны в спинальных ганглиях, расположен в спинных корешках продолговатого мозга , В некоторых случаях дендрит и аксон расположены в противоположных полюсах тела клетки, в то время как в других оба расширения очень близки.

Другие типы нейронов

Классификация некоторых нейронов как «биполярных» структурирована в структурном делении этих клеток согласно числу полюсов (составленных аксонами и дендритами), которые они представляют. С этой точки зрения мы можем отличить биполярные нейроны от униполярных нейронов, от псевдоуниполярных нейронов, от мультиполярных нейронов и от анаксонических нейронов.

1. Униполярный

В униполярных нейронах аксон и дендриты начинаются с одного и того же расширения из сомы или клеточного тела; Эта структура известна как “нейрит”. Это тип нейрона, который не встречается у людей.

2. Псевдоуниполярный

В некоторых биполярных нейронах мы находим аксон, разделенный на две ветви; один из них направляется в спинной мозг, а другой – в периферическую нервную систему.Эти нейроны известны как «псевдоуниполярные», потому что они, кажется, имеют один полип, потому что аксоны и дендриты соединены, хотя в действительности их два.

3. Многополярный

Многополярные нейроны имеют два или более дендритов, расположенных в точке, отдельной от аксона. Они составляют хорошую часть центральной нервной системы и они в основном имеют двигательную функцию, хотя многие многополярные нейроны обеспечивают связь между периферической и центральной нервной системами; следовательно, эта категория также включает интернейроны.

4. Анаксон

В анаксонических нейронах, которые находятся в мозге и в сетчатке, нет истинного аксона, или он неотличим от дендритов. Эти клетки действуют как интернейроны.

Нервная ткань. 3. Виды нейронов (May 2020)

Источник: https://ru.yestherapyhelps.com/bipolar-neurons-morphology-location-and-functions-12895

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.