История чисел. Системы счисления. История создания систем счисления

Древние системы счисления

История чисел. Системы счисления. История создания систем счисления

Никто не знает как давно люди научились считать. Но, почти наверняка, нам известно как они это делали раньше. По крайней мере, с того момента, когда древние числа начали записывать.

Система  счисления, это просто метод, которым представляются числа, чаще всего для этого мы используем специальные знаки — цифры. Сейчас мы пользуемся (и то не всегда) десятичной системой, у нас 10 цифр, и основание тоже — десятка.

Количество символов и основание не обязательно должны быть равны. В клинописи, например, только один символ — клин.

Древние цифры

Самой старой системой счисления была единичная или унарная. В ней была только одна цифра — единица. Так можно было сосчитать все, что угодно, интуитивно понятно и логично. Один это — I два, это — II  три — III.

Все просто, один палец, один предмет, если пальцы закончатся, можно взять палочки или камешки. Для удобства цифру (одну цифру) можно группировать по три или по четыре — IIII IIII IIII.  Пока не нужно считать много, очень удобно.

Но древним людям не приходилось много считать, они были заняты выживанием.

Единичную систему счисления применяют и сегодня… Попав на необитаемый остров, вы будете отмечать счастливые деньки именно в такой манере, зарубками на стволе дерева, например.

Двенадцатеричная система счисления

Она же Шумерская. Самая древняя система записи чисел из извесных.

Шумерская цивилизация счистится древнешей, и шумерская математика, скорее всего, тоже самая древняя. Итак почему 12, а не 5 или 10 (по числу пальцев).

На самом деле дело в пальцах, и у древних жителей Междуречья пальцев было тоже по 5 на каждой руке. Но считали они не пальцы, а фаланги. Посмотрите на картинку.

Прикасаясь большим пальцем к фалангам можно посчитать до 12. Эта система более удобна для счета, чем современна десятичная. Например, удобнее делить на 3.

Записывались все числа при помощи всего двух цифр: единицы (вертикальный клин) и десятки (горизонтальный клин). Цифра клин одна — а чисел записать можно много.

Запись чисел клинописью

В десятичной системе 1/3 = 0,33333333 (3). А в двенадцатеричной деление на 3 — это целое число. Ведь «дюжина» делится на 1,2,3,4,6 и само на себя. А десять, только на 1,2,5 и на 10.

Нет ничего сложного в том, чтобы разделить одну пиццу на троих, но как это сделать в десятичной системе? Разрезать на 10 равных частей и взять по сколько….Целые куски не получатся.

А вот если основа «дюжина», то деление на три даст 0,4. Двенадцать кусочков по 4 каждому.

Система настолько удобная, что мы пользуемся ею до сих пор…

От 12, сразу прыгаем к 60. Вавилонское царство возникло на месте шумерского. Поэтому, 12-ти и 60-ти, это фактически одна и та же система. Откуда взялось 60? Опять таки из пальцев. На одной руке 12 фаланг, а на другой — 5 пальцев. Досчитав до 12 на одно руке загибаем палец на другой и считаем снова до 12. Два загнутых пальца — две дюжины.

12х5=60.

И что же так считают? Время. На циферблате 12 часов по 60 минут в каждом.

Шумерские ученые первыми занялись астрономией, расчетом времени и календарем. Все остальные народы позаимствовали у них эти знания. И до сегодняшнего дня ничего не изменилось. Да и в окружности 360 градусов, а не 100, просто потому, что 360=12*30.

В Английской системе мер то же самое, в одном футе — 12 дюймов, в одном фунте — 12 унций. Во всем виноваты шумеры и удобство деления. Делить что-то на 2,3 и 4 приходится гораздо чаще, чем на 2 и на 5. Англичане точно знают, сколько это «треть фунта»,  а сколько будет «треть килограмма»?

Двадцатиричная система счисления

Ей пользовались индейцы майа. Но для записи использовались только три символа. Это «ноль», «единица» и «пять». Ноль изображался в виде ракушки, единица — точка, а пять — это линия. Чтобы записать число 18 делали так:

Выше написано буквально «три пятерки и три двойки», 5+5+5+3=18. В отличие от шумерской системы с двумя знаками для чисел, а индейцев Майа был самый настоящий ноль.

Десятичная система

Более молодая, чем вышеперечисленные. Использовалась в Египте, Древней Греции, Риме и, конечно, в Индии. Первыми, кто ее начал использовать были египтяне. Единица это — I двойка — II тройка — III…. Но для десятки был свой символ в виде дуги. Также и для сотни, тысячи, десяти тысяч.

Самым большой цифрой был миллион. Он изображался в виде человека с поднятыми вверх руками. Чтобы записать 12 делали так.

Впрочем, если написать «палочки» с другой стороны от дуги, число не изменится.

Древние греки тоже использовали десятичную систему, но вместо цифр — буквы. В самой древней, аттической системе египетский ряду цифр 1-10-100-1000 добавилась пятерка, которая записывалась буквой Π (пента, по-гречески «пять»). Интересно, что для денницы использовалась буква Ι.

Римская система счисления нам тоже хорошо известна. Она десятичная, так как пришла из Египта через Грецию. Единица римлян, такая же как и у египтян — I.  Есть пятерка от греков — V.

Многие историки считают, что такое изображение это упрощенный рисунок человеческой руки (пальцы не растопырены), а Х, это две скрещенные ладошки. У римлян, в отличие от египтян, позиция имеет значение.

Так ХI — это одиннадцать, а — девять.

После рассмотрения всех старых систем, становится понятно, как развивалась древняя арифметика. Когда в унитарной системе стало не хватать символов, вводились новые.

Достаточно неудобно считать «палочки» IIII IIII IIII, когда их много, добавляли символы для 5 или 10. Индейцы Майа вместо палочек использовали камешки рисовали точки для единиц, а «черточка» это пять камешков.

Все опять упирается в количество пальцев.

Источник: https://interesnye-istorii.in.ua/ancient-number-systems/

История чисел и система счисления, позиционные системы (кратко)

История чисел. Системы счисления. История создания систем счисления

История чисел и система счисления тесно взаимосвязаны, потому что система счисления и представляет собой способ записи такого абстрактного понятия, как число. Данная тема не относится сугубо к области математики, ведь всё это является важной частью культуры народа в целом.

Потому, когда разбирается история чисел и систем счисления, кратко затрагиваются и многие другие аспекты истории создавших их цивилизаций. Системы в целом делятся на позиционные, непозиционные и смешанные. Из их чередования состоят вся история чисел и систем счисления. Позиционные системы – это такие, в которых величина, обозначаемая цифрой в записи числа, зависит от ее позиции.

В непозиционных системах, соответственно, такой зависимости нет. Человечеством созданы и смешанные системы.

Изучение систем счисления в школе

Сегодня урок «История чисел и систем счисления» проводится в 9 классе в рамках курса по информатике. Главное практическое его значение – научить переводить числа из одной системы счисления в другую (прежде всего из десятиричной в двоичную).

Однако история чисел и систем счисления является органической частью истории в целом и вполне могла бы дополнить также и этот предмет школьной программы. Также это могло бы улучшить пропагандируемый сегодня междисциплинарный подход.

В рамках общего курса истории в принципе могла бы изучаться не только история экономического развития, социально-политических движений, правлений и войн, но и в небольшой степени история чисел и систем счисления.

9 класс в курсе информатики в таком случае можно было бы в части перевода чисел из одной системы в другую снабдить значительно большим число примеров из ранее пройденного материала. А примеры эти не лишены увлекательности, что и будет показано ниже.

Сложно сказать, когда, а главное, как человек научился считать (так же, как невозможно доподлинно выяснить, когда, а главное, как возник язык). Известно только, что все древние цивилизации уже имели свои системы счёта, значит, история чисел и система счисления зародились в доцивилизационное время.

Камни и кости не способны рассказать нам, что происходило в человеческом сознании, а письменных источников тогда ещё не создавали. Возможно, счёт понадобился человеку при разделе добычи или много позже, уже в ходе неолитической революции, то есть при переходе к земледелию, для раздела участков поля. Любые теории на этот счёт будут в равной степени беспочвенными.

Но некоторые предположения всё же можно сделать, изучая историю различных языков.

Следы древнейшей системы счисления

Самая логичная начальная система счёта – противопоставление понятий «один» – «много». Логична она для нас потому, что в современном русском языке существует только единственное и множественное число.

Но во многих древних языках было также и двойственное число для обозначения двух предметов. Существовало оно и в первых индоевропейских языках, включая древнерусский. Таким образом, история чисел и система счисления начались с разделения понятий «один», «два», «много».

Однако уже в самых древних известных нам цивилизациях были разработаны более детальные системы счисления.

Месопотамская запись чисел

Мы привыкли, что система счисления десятирична. Это и понятно: на руках 10 пальцев. Но тем не менее история возникновения чисел и систем счисления прошла через более сложные фазы. Месопотамская система счисления – шестидесятиричная. Потому до сих пор в часе 60 минут, а в минуте – 60 секунд.

Потому год делится на число месяцев, кратное 60, а день делится на такое же число часов. Изначально это были солнечные часы, то есть каждый из них составлял 1/12 светового дня (на территории современного Ирака его длительность не сильно варьировалась).

Только много позже длительность часа стали определять не по солнцу и добавили также 12 ночных часов.

Интересно то, что записывались знаки этой шестидесятиричной системы, будто она десятиричная – существовало только два знака (для обозначения единицы и десятка, не шести и не шестидесяти, а именно десятка), цифры получали, комбинируя эти знаки. Страшно себе даже вообразить, как сложно было записать сколько-нибудь большое число таким способом.

Древнеегипетская система счисления

И история чисел в десятиричной системе счисления, и использование многочисленных значков для обозначения чисел началось с древних египтян. Они комбинировали иероглифы, которые обозначали один, сто, тысячу, десять тысяч, сто тысяч, миллион и десять миллионов, обозначая таким образом нужное число.

Такая система была гораздо удобнее, чем месопотамская, использовавшая только два знака. Но при этом она имела явное ограничение: сложно было записать число, значительно большее, чем десять миллионов.

Правда, древнеегипетская цивилизация, как и большинство цивилизаций Древнего мира, с такими числами не сталкивалась.

Эллинские буквы в математических записях

История европейской философии, науки, политической мысли и многого другого во многом начинается в Древней Элладе («Эллада» – это самоназвание, оно предпочтительнее, чем придуманное римлянами «Греция»). Развиты в этой цивилизации были и математические знания.

Числа эллины записывали буквами. Отдельные буквы обозначали каждое число от 1 до 9, каждый десяток от 10 до 90 и каждую сотню от 100 до 900. Только тысячу обозначали той же буквой, что и единицу, но с другим знаком рядом с буквой.

Система позволяла даже большие цифры обозначать относительно короткими надписями.

Славянская система счисления как наследница эллинской

История чисел и систем счисления была бы не полной без нескольких слов о наших предках. Кириллица, как известно, основана на эллинском алфавите, потому и славянская система записи цифр также была основана на эллинской. Здесь тоже отдельными буквами обозначалось каждое число от 1 до 9, каждый десяток от 10 до 90 и каждая сотня от 100 до 900.

Только использовались не эллинские буквы, а кириллица, или глаголица.

Существовала также и интересная особенность: несмотря на то что и эллинские тексты в то время, и славянские с самого начала их истории записывались слева направо, славянские цифры писались как бы справа налево, то есть буквы, обозначавшие десятки ставили правее букв, обозначавших единицы, буквы, обозначавшие сотни правее букв, обозначавших десятки и т. д.

Аттическое упрощение

Эллинские учёные достигли огромных высот. Римское завоевание не прервало их изысканий. Например, судя по косвенным свидетельствам, Аристарх Самосский за 18 веков до Коперника разработал Гелиоцентрическую систему мира. Во всех этих сложных расчётах эллинским учёным помогала их система записи чисел.

Но для простых людей, например, торговцев, система зачастую оказывалась слишком сложной: чтобы её использовать, требовалось запомнить числовые значения 27 букв (вместо числовых значений 10 символов, которые учат современные школьники).

Потому появилась упрощённая система, получившая название аттической (Аттика – область Эллады, одно время лидировавшая в регионе в целом и особенно в морской торговле региона, так как столицей Аттики были знаменитые Афины). В этой системе отдельными буквами стали обозначаться только числа один, пять, десять, сто, тысяча и десять тысяч.

Получается всего шесть знаков – их гораздо легче запоминать, а слишком сложных вычислений торговцы всё равно не производили.

Римские цифры

И система счисления, и история чисел древних римлян, и в принципе история их науки является продолжением эллинской истории.

За основу была взята аттическая система, просто эллинские буквы заменили латинскими и добавили отдельное обозначение пятидесяти и пятисот.

При этом сложные расчёты в своих трактатах учёные продолжали производить эллинской системой записи в 27 букв (да и сами трактаты они обычно писали по-эллински).

Римскую систему записи чисел нельзя назвать особо совершенной. В частности, она гораздо более примитивна, чем древнерусская.

Но исторически сложилось так, что она до сих пор сохраняется наравне с арабскими (так называемыми) цифрами. И забывать эту альтернативную систему, переставать её использовать не стоит.

В частности, сегодня часто арабскими цифрами обозначаются количественные числительные, а римскими – порядковые.

Великое древнеиндийское изобретение

Цифры, которые сегодня используем мы, появились изначально в Индии. Точно не известно, когда история чисел и система счисления сделали этот знаменательный поворот, но, скорее всего, не позднее V века от Рождества Христова.

Часто подчёркивается, что именно индийцы разработали понятие нуля.

Такое понятие было известно математикам и других цивилизаций, но действительно лишь система индийцев позволила полноценно включить его в математические записи, а значит, и в вычисления.

Предположительно в IX веке индийские цифры заимствовали арабы. В то время как европейцы пренебрежительно относились к античному наследию, а в некоторые регионах одно время даже намеренно уничтожали его как языческое, арабы бережно хранили достижения древних греков и римлян.

С самого начала их завоеваний ходовым товаром стали переводы античных авторов на арабский. В основном через трактаты арабских учёных средневековые европейцы снова обрели наследие древних мыслителей. Вместе с этими трактатами пришли и индийские цифры, которые в Европе стали называть арабскими.

Они не сразу были приняты, потому что для большинства людей оказались менее понятными, чем римские. Но постепенно удобство математических расчётов с помощью этих знаков победило невежественность.

Лидерство европейских промышленно развитых стран привело к тому, что так называемые арабские цифры распространились по всему миру и сегодня применяются практически повсеместно.

Двоичная система счисления современных компьютеров

С появлением компьютеров постепенно совершили значительный поворот многие области знаний. Не стала исключением история чисел и систем счисления.

Фото первого компьютера мало напоминает современное устройство, на мониторе которого вы читаете эту статью, но работа их обоих основана на двоичной системе счисления, коде, состоящем, только из нулей и единиц.

Для обыденного сознания всё же остаётся удивительным, что с помощью комбинации из всего двух символов (фактически сигнала или его отсутствия) можно производить самые сложные вычисления и автоматически (при наличии соответствующей программы) переводить числа в десятиричной системе исчисления в числа в двоичной, шестнадцатиричной, шестидесятишестиричной и любой другой системе. И с помощью такого двоичного кода на мониторе изображается данная статья, где отражена история чисел и система счисления у разных цивилизаций в истории.

Источник: https://FB.ru/article/228271/istoriya-chisel-i-sistema-schisleniya-pozitsionnyie-sistemyi-kratko

История чисел

История чисел. Системы счисления. История создания систем счисления

История возникновения чисел очень глубокая и давняя. Сама жизнь привела людей к тому, что стало просто необходимо использовать символы для написания чисел.

Представьте, ведь давным-давно во времена, когда у людей не было цифр и они не умели считать как мы сейчас, у них все-равно возникало огромное количество поводов для счета. Правда, в те времена им не нужно было применять огромные числа. И самый простой вариант счета подсказала природа.

Люди использовали пальцы рук, а при больших числах и ног, чтобы посчитать, например, количество голов скота в стаде.  Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах.

Достаточно неудобно было, а вдруг никого рядом не окажется когда срочно нужно посчитать большое количество чего-нибудь?

История чисел

Потом кто-то придумал делать глиняные кружочки для подсчета. Например, повел пастух с утра большое стадо на пастбище. Подсчитал всех животных с помощью кружков — сколько кружков, столько животных. Вечером привел их домой, опять смотрит, чтобы каждому животному соответствовал один кружок. Ну и подобных вариантов существовало множество, то есть пользовались подручными средствами.

Первое доказательство использования древними людьми счета — это волчья кость, на которой 30 тысяч лет назад сделали зарубки. Притом они набиты не как-нибудь, а сгруппированы по пять.

Древность

В Древности у разных народов существовали свои способы счета. Например, майа использовали только три обозначения: точку, линию и эллипс и записывали ими любые цифры.

В Древнем Египте около 5000-4000 лет до н.э. использовали такую запись чисел: единица обозначалась палочкой, сотня — пальмовым листом, а сто тысяч — лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч — очень много, как лягушек в Ниле).

А вот наши предки-славяне использовали самую сложную запись чисел. Они их записывали буквами, над которыми ставили специальный значок «титло», чтобы отличить, где написали буквы, а где цифры, и значков у них было аж 27.

А, например, папуасские племена имели только две цифры, один и два, и называли их «урапун» и «окоза» соответственно. А дальнейшие числа называли просто используя эти два. Например три у них — «окоза-урапун», а четыре — «окоза-окоза». Видимо, считать им особо нечего, поэтому больших чисел у них нет. А все, что больше шести-семи они называют «много». А сколько там «много» уже неизвестно!

Клинопись

Клинописное письмо

Но человечество развивалось, хозяйство увеличивалось, усложнялись и подсчеты. Появилась потребность в записи чисел. Ведь на память невозможно упомнить, сколько в стаде голов скота, сколько мешков пшеницы у тебя лежит, а сколько потратили, сколько посадили и какой собрали урожай. И вот примерно в V веке до нашей эры появились первые цифры.

Говорят, что первые числа изобрели шумеры, народ, живший на территории Южного Междуречья Тигра и Евфрата, современного Ирака примерно в IV-III тысячелетии до н.э. Шумеры, кстати, очень интересный народ. Огромное количество изобретений, известных сейчас, были впервые использованы ими. Например, постельное белье, обожженный кирпич, колесо.

 Шумеры изобрели и так называемое клинописное письмо или клинопись. На глиняных табличках рисовались различные символы в виде клиньев. Цивилизация шумеров была очень развита для тех времен. В их города жили торговцы, ремесленники.

Для счета применялись сначала глиняные фишки различной формы. Со временем на них стали делать пометки, которые обозначали количество и вид того, что считали. Например, две козы. Но два мешка писали совершенно по-другому.

То есть они описывали количество конкретных объектов и не выделяли отдельно цифру.

После шумеров на этих землях обосновались вавилоняне. Они переняли систему счисления шумеров. Египтяне тоже пользовались похожей системой счета.

Но все-таки подобный способ записи чисел не идеален и с развитием человечества развивалась и запись чисел.

Арабские цифры

Арабские цифры

В V веке в Индии появилась система записи, которую мы знаем как арабские цифры и активно используем сейчас. Это был набор из 9 цифр от 1 до 9. Каждая цифра записывалась так, чтобы ей соответствовало количество углов. Например, в цифре 1 — один угол, в цифре 2 — два угла, в цифре 3 — три. И так до 9. Нуля еще не существовало, он появился позже. Вместо него просто оставляли пустое место.

Запись цифры по числу углов

Далее произошло интересное: арабы переняли индийскую систему счисления и начали вовсю применять ее. В те времена мусульманский мир был очень развит, он имел очень тесные связи и с азиатской и европейской культурой и брал от них все самое совершенное и передовое на то время.

Математик Мухаммед Аль-Хорезми в IX веке составил руководство об индийской нумерации. Оно в XII веке попало в Европу и эта система счисления получило очень широкое распространение. Интересно, но именно из-за того, что к нам эти цифры пришли от арабов, мы их называем арабскими, а не индийскими.

Кстати, и само слово «цифра» — арабского происхождения. Арабы перевели индийское «сунья» и получилось «цифр».

Арабская система счисления называется позиционной. Это значит, что значение числа зависит от положения его в записи.

То есть в числе 18 цифра 8 обозначает 8 единиц, а в числе 87 та же восьмерка обозначает 8 десятков. Позиционные системы наиболее совершенны.

Но они произошли от непозиционных систем (которые, в принципе, существуют и сейчас) в результате развития человечества, его знаний и потребностей.

Интересно то, что современные арабские цифры сильно отличаются от тех, которые используем мы:

Современные арабские цифры

Вот такая история чисел. Сейчас тоже используются разные числа. Некоторые страны, как например, арабские страны и Китай, пользуются своими особенными цифрами. Но, все-таки, наибольшее распространение получили арабские цифры, которые используют и понимают во всем мире.

Вам также может быть интересно:

История денег (с мультфильмом, который я специально для этой статьи нарисовала).

История матрешки.

Источник: http://lubopitnie.ru/istoriya-chisel/

Система счисления

История чисел. Системы счисления. История создания систем счисления

Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Такие символы называют цифрами.

Системы счисления

Для представления чисел используются непозиционные и позиционные системы счисления.

Непозиционные системы счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек.

Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путём повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня.

Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1–го класса счету.

Рассмотрим различные системы счисления.

Единичная система – не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.

Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки – иероглифы.

Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной. В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.

Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы).

Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.

Римская система счисления. Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме.

В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII=10+10+5+1+1+1 (два десятка, пяток, три единицы).

Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него. Например, IX – обозначает 9, XI – обозначает 11.

Десятичное число 99 имеет следующее представление:

XCIХ = –10+100–1+10.

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.

Алфавитные системы счисления. Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие.

В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита. В алфавитной системе счисления Древней Греции числа 1, 2, …, 9 обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел 10, 20, …

, 90 применялись следующие 9 букв а для обозначения чисел 100, 200, …, 900 – последние 9 букв.

У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.

Непозиционные системы счисления имеют ряд существенных недостатков:

  • Существует постоянная потребность введения новых знаков для записи больших чисел.
  • Невозможно представлять дробные и отрицательные числа.
  • Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

В позиционных системах счисления – количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа. Ныне мы привыкли пользоваться десятичной позиционной системой — числа записываются с помощью 10 цифр. Самая правая цифра обозначает единицы, левее — десятки, ещё левее — сотни и т.д.

Например: 1) шестидесятеричная (Древний Вавилон)– первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1мин = 60с, 1ч = 60мин); 2) двенадцатеричная система счисления (широкое распространение получила в XIX в.

число 12 – “дюжина”: в сутках две дюжины часов). Счёт не по пальцам, а по суставам пальцев.

На каждом пальце руки, кроме большого, по 3 сустава – всего 12; 3) в настоящее время наиболее распространёнными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная (широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами).

В любой позиционной системе число может быть представлено в виде многочлена.

Покажем, как представляют в виде многочлена десятичное число:

Типы систем счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа.

Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет).

Основных цифр здесь тоже 10, и система счисления – десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления.

Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления.

“А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

Источник: http://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.