Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

Содержание

Правильные многогранники. Часть 1. Трёхмерие

Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.

Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше.

Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве — так тесно переплетены, что выносить всё это в название статьи оказалось проблематично.

Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.

Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:

1. Тетраэдр:2. Куб:3. Октаэдр:4. Додекаэдр:5. Икосаэдр:

В трёхмерном пространстве правильным многогранником называется выпуклый многогранник, у которого все вершины равны между собой, все рёбра равны между собой, все грани равны между собой и грани являются правильными многоугольниками. Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны. Вершины равны между собой означает, что количество рёбер и количество граней подходящих к каждой вершине одинаковое и подходят они под одинаковыми углами, в каждой вершине.

Оказывается, правильные многогранники удобно обозначать их символом Шлефли {p1, p2}, характеризующим их комбинаторное строение. Который означает, что p1 угольники, сошлись по p2 штук в вершине. Т.е. по определению p1, p2 — целые числа, большие либо равные 3. Для тех кто не знаком с понятием Символ Шлефли написал отдельную статью с картинками Символ Шлефли. Часть 2.6

В такой записи наши многогранники получат обозначения: 1. Тетраэдр {3, 3}, 2. Куб {4, 3}, 3. Октаэдр {3, 4}, 4. Додекаэдр {5, 3}, 5. Икосаэдр {3, 5} Например, {4, 3} — куб имеет 4 угольные грани, в каждой вершине сходится по 3 таких грани. У октаэдра {3, 4} наоборот, грани 3 угольные, сходятся по 4 штуки в вершине. Таким образом символ Шлефли полностью определяет комбинаторное строение многогранника. Почему правильных многогранников всего 5? Может быть их больше? Чтобы сполна дать ответ на этот вопрос, нужно сначала получить интуитивное представление о геометрии на сфере и на плоскости Лобачевского. Тем у кого такого представления ещё нет постараюсь дать необходимые объяснения.

Сфера

1. Что такое точка на сфере? Думаю, что всем интуитивно понятно. Мысленно не сложно представить точку на сфере. 2. Что такое отрезок на сфере? Берём две точки и соединяем их кратчайшим расстоянием на сфере, получится дуга, если смотреть на сферу со стороны. 3.

Если продолжить этот отрезок в обе стороны, то он замкнётся и получится окружность. При этом плоскость окружности содержит центр сферы, это следует из того, что две исходные точки мы соединили кратчайшим, а не произвольным, расстоянием.

Это со стороны она выглядит, как окружность, а в терминах сферической геометрии это прямая, так как была получена из отрезка, продолжением до бесконечности в обе стороны. 4. И, наконец, что такое треугольник на сфере? Берём три точки на сфере и соединяем их отрезками.

По аналогии с треугольником можно нарисовать произвольный многоугольник на сфере. Для нас принципиально важно свойство сферического треугольника, заключающееся в том, что сумма углов у такого треугольника больше 180 градусов, к которым мы привыкли в Евклидовом треугольнике.

Более того, сумма углов у двух различных сферических треугольников различна. Чем больше треугольник, тем БОЛЬШЕ у него сумма углов. Соответственно, появляется 4-й признак равенства треугольников на сфере — по трём углам: два сферических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты саму сферу проще не рисовать, тогда треугольник будет выглядеть немного раздутым: Сферу ещё называют пространством постоянной положительной кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Лобачевский

Теперь, когда мы познакомились с геометрией на сфере, понять геометрию на гиперболической плоскости, открытую великим русским учёным Николаем Ивановичем Лобачевским, будет тоже не сложно, так как тут всё происходит аналогично сфере, только «наизнанку», «наоборот».

Если дуги на сфере мы проводили окружностями, с центром внутри сферы, то теперь дуги надо проводить окружностями с центром за пределами сферы. Приступим. Плоскость Лобачевского будем представлять в интерпретации Пуанкаре II (Жюль Анри́ Пуанкаре́, великий французский учёный), эту интерпретацию геометрии Лобачевского ещё называют диском Пуанкаре. 1.

Точка в плоскости Лобачевского. Точка — она и в Африке точка. 2. Отрезок на плоскости Лобачевского. Соединяем две точки линией по кратчайшему расстоянию в смысле плоскости Лобачевского. Кратчайшее расстояние строится следующим образом: Надо провести окружность ортогональную диску Пуанкаре, через заданные две точки (Z и V на рисунке).

Центр этой окружности будет находиться всегда за пределами диска. Дуга соединяющая исходные две точки будет кратчайшим расстоянием в смысле плоскости Лобачевского. 3. Убрав вспомогательные дуги, получим прямую E1 — H1 в плоскости Лобачевского.

Точки E1, H1 «лежат» на бесконечности плоскости Лобачевского, вообще край диска Пуанкаре — это всё бесконечно удалённые точки плоскости Лобачевского. 4. И наконец, что такое треугольник в плоскости Лобачевского? Берём три точки и соединяем их отрезками. По аналогии с треугольником, можно нарисовать произвольный многоугольник на плоскости Лобачевского.

Для нас принципиально важно свойство гиперболического треугольника, заключающееся в том, что сумма углов у такого треугольника всегда меньше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных гиперболических треугольников различна. Чем больше треугольник по площади, тем МЕНЬШЕ у него сумма углов.

Соответственно, тут тоже имеет место 4-й признак равенства гиперболических треугольников — по трём углам: два гиперболических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты сам диск Пуанкаре иногда можно не рисовать, тогда треугольник будет выглядеть немного «усохшим», «сдутым»: Плоскость Лобачевского (и вообще пространство Лобачевского любой размерности) ещё называют пространством постоянной ОТРИЦАТЕЛЬНОЙ кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Правильные разбиения двумерной Сферы и правильные трёхмерные многогранники

Всё сказанное про сферу и плоскость Лобачевского относится к двумерию, т.е. поверхность сферы — двумерна. Какое это имеет отношению к трёхмерию, указанному в заголовке статьи? Оказывается, каждому трёхмерному правильному Евклидову многограннику взаимно однозначно соответствует своё разбиение двумерной сферы.

Лучше всего это видно на рисунке: Чтобы из правильного многогранника получить разбиение сферы, нужно описать вокруг многогранника сферу. Вершины многогранника окажутся на поверхности сферы, соединив эти точки отрезками на сфере (дугами), получим разбиение двумерной сферы на правильные сферические многоугольники.

Для примера сделана видео демонстрация как икосаэдр соответствует разбиению сферы на сферические треугольники и обратно, как разбиение сферы на сферические треугольники, сходящиеся по пять штук в вершине, соответствует икосаэдру.

Чтобы по разбиению сферы построить многогранник, соответствующие дугам вершины разбиения нужно соединить обычными, прямолинейными, Евклидовыми отрезками.

Соответственно символ Шлефли икосаэдра {3, 5} — трёхугольники, сходящиеся по пять штук в вершине, задаёт не только структуру этого многогранника, но и структуру разбиения двумерной сферы. Аналогично и с другими многогранниками, их символы Шлефли задают и структуру соответствующих разбиений.

Более того, разбиения плоскости Евклида и плоскости Лобачевского на правильные многоугольники, тоже можно задавать символом Шлефли. Например, {4, 4} — четырёхугольники, сходящиеся по четыре — это всем привычная нам тетрадь в клеточку, т.е. это разбиение плоскости Евклида на квадраты. А есть ли другие разбиения плоскости Евклида? Увидим дальше.

Построение разбиений двумерной сферы, плоскости Евклида и плоскости Лобачевского

Для построения разбиений двумерных пространств постоянной кривизны (таково общее название этих трёх пространств) нам потребуется элементарная школьная геометрия и знание того, что сумма углов сферического треугольника больше 180 градусов (больше Пи), что сумма углов гиперболического треугольника меньше 180 градусов (меньше Пи) и что такое символ Шлефли.

Обо всём об этом уже сказано выше. Итак, возьмём произвольный символ Шлефли {p1, p2}, он задаёт разбиение одного из трёх пространств постоянной кривизны (для плоскости это верно, для пространств высших размерностей дело обстоит сложнее, но ничто нам не мешает исследовать все комбинации символа).

Рассмотрим правильный p1 угольник, проведём отрезки, соединяющие его центр и вершины. Получим p1 штук равнобедренных треугольника (на рисунке показан только один такой треугольник). Сумму углов каждого из этих треугольников обозначим за t и выразим t через пи и коэффициент лямда. Тогда если лямда = 1, то треугольник Евклидов, т.е.

находится в Евклидовой плоскости, если лямда в интервале (1, 3), то это значит, что сумма углов больше пи и значит этот треугольник сферический (не трудно представить, что при увеличении сферического треугольника в пределе получается окружность с тремя точками на ней, в каждой точке угол треугольника получается равным пи, а в сумме 3*пи.

Это объясняет верхнюю границу интервала = 3). Если же лямда в интервале (0, 1), то треугольник гиперболический, так как сумма углов у него меньше пи (т.е. меньше 180 градусов). Коротко это можно записать так: Не трудно посчитать, что: С другой стороны, для сходимости в вершине p2 штук (т.е.

целого числа) таких же многоугольников нужно, чтобы Приравнивая выражения для 2*бетта, найденные из условия сходимости и из многоугольника: Получили уравнение которое показывает какое из трёх пространств разбивает фигура заданная своим символом Шлефли {p1, p2}.

Для решения этого уравнения надо вспомнить, так же, что p1, p2 — целые числа, большие либо равные 3. Это, так сказать, следует из их физического смысла, так как это p1 угольники (не меньше 3 углов), сходящиеся по p2 штук в вершине (тоже не меньше 3, иначе это не вершина получится).

Решение этого уравнения заключается в переборе всех возможных значений для p1, p2 больших либо равных 3 и вычислении значения лямда. Если оно получится равным 1, то {p1, p2} разбивает плоскость Евклида, если больше 1 но меньше 3, то это разбиение Сферы, если от 0 до 1, то это разбиение плоскости Лобачевского. Все эти вычисления удобно свести в таблицу.

Откуда видно, что: 1. Сфере соответствует всего 5 решений, когда лямда больше 1 и меньше 3, они выделены зелёным цветом в таблице. Это: {3, 3} — тетраэдр, {3, 4} — октаэдр, {3, 5} — икосаэдр, {4, 3} — куб, {5, 3} — додекаэдр. Их картинки были представлены в начале статьи. 2.

Разбиениям Евклидовой плоскости соответствует всего три решения, когда лямда = 1, они выделены синим цветом в таблице. Вот как выглядят эти разбиения.

3. И наконец, все остальные комбинации {p1, p2} соответствуют разбиениям плоскости Лобачевского, соответственно таких разбиений бесконечное (счётное) количество. Осталось только проиллюстрировать некоторые из них, для примера. {3, 7} {4, 5} {4, 6} {4, 7} {5, 4} {5, 5} {5, 6} {5, 7} {6, 4}

Итоги

Таким образом, правильных многогранников всего 5, они соответствуют пяти разбиениям двумерной сферы, разбиений плоскости Евклида всего 3, и разбиений плоскости Лобачевского счётное количество. Какое приложение этих знаний?

Есть люди, которые напрямую интересуются разбиениями сферы: dxdy.ru/topic62800.html,

Есть статьи на Хабре (вот), где также рассматриваются интерпретации геометрии Лобачевского. Данная статья, возможно поможет кому-то лучше понять и познакомиться с геометрией Лобачевского. Знание многогранников так же помогает ответить на вопрос: сколько у футбольного мяча правильных шестиугольников и сколько пятиугольников. Зная, что футбольный мяч — это усечённый икосаэдр, сразу можно дать ответ на этот вопрос: пятиугольников столько, сколько вершин у икосаэдра, шестиугольников столько, сколько граней у икосаэдра, значит, пятиугольников 12, шестиугольников 20. Да, хотелось бы ещё рассказать про комбинаторную формулу вычисления количества вершин, рёбер и граней у этих пяти правильных многогранников, но это уже в следующий раз. И без того как-то сложновато получилось, хотя я рассчитывал на школьный уровень знаний читателей. Так же в следующей статье при наличии интереса читателей планирую показать, как обобщается данный подход на пространства высших размерностей. Лично для меня знание разбиений позволяет понять структуру этих пространств, особенно это актуально в размерностях выше 3. Если вам мало трёхмерного пространства, вам понятна эта публикация и хочется забраться повыше, по размерности, то «переходите на следующий уровень» 🙂 Ссылки:

Правильные многогранники. Часть 1. Трёхмерие

Правильные многогранники. Часть 2. Четырёхмерие
Правильные многогранники. Часть 2.5 (вспомогательная)
Символ Шлефли. Часть 2.6 Хабы:

Источник: https://habr.com/post/247449/

Опорный конспект 4. Правильные многоугольники – УчительPRO

Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

Наглядная геометрия 9 класс. Опорный конспект 4. Правильные многоугольники

Правильный многоугольник — это такой многоугольник, у которого все стороны и все углы равны. Равносторонний треугольник и квадрат — правильные многоугольники.

Если разделить окружность на п равных частей и соединить соседние точки отрезками, то получим правильный многоугольник.

Вокруг всякого правильного многоугольника можно описать окружность, в него также можно вписать окружность, и центры этих окружностей совпадают.

Мы научимся строить правильный треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник при помощи циркуля и линейки и выведем формулы, связывающие радиусы вписанной и описанной окружностей с длиной стороны правильного многоугольника.

Если число сторон вписанного правильного многоугольника увеличивать, то его периметр будет стремиться к длине окружности, а площадь — к площади круга. Отсюда можно получить формулы длины окружности и площади круга: С = 2πR и S = πR2.

Вы знаете, что углы измеряются в градусах. Градус, как известно, равен 1/180 части развернутого угла. Мы познакомимся еще с одной очень важной единицей измерения углов, которая связана с окружностью, — 1 радианом. 1 рад = 57°.

1. Правильный многоугольник. Теорема об описанной и вписанной окружностях.

Правильным называется многоугольник, у которого все стороны и углы равны.

Теорема. Вокруг всякого правильного многоугольника можно описать окружность. Во всякий правильный многоугольник можно вписать окружность. Центры этих окружностей совпадают.

Доказательство. Проведем биссектрисы двух углов правильного многоугольника. Получим равнобедренный треугольник (углы при основании равны как половины равных углов). Соединив точку пересечения биссектрис с третьей вершиной многоугольника, получим треугольник, равный 1-му (по двум сторонам и углу между ними).

Продолжая соединять эту точку с остальными вершинами, получим множество равных равнобедренных треугольников. Тогда полученная точка равноудалена от всех вершин правильного многоугольника. Значит, она — центр описанной окружности.

Так как высоты этих треугольников, опущенные на их основания, равны, то данная точка равноудалена и от сторон правильного многоугольника. Значит, она — центр вписанной окружности.

2. Выражение стороны а через R и r для правильного n-угольника.

Соединим центр правильного многоугольника с двумя соседними вершинами. Получим равнобедренный треугольник с углом при вершине, равным 360°/n. Половина его равна 180°/n, где n — число сторон. Из прямоугольного треугольника находим:

6. Формула длины окружности. Вывод.

Теорема. Длина окружности С = 2πR.

Доказательство. Рассмотрим ДВА правильных вписанных многоугольника с одинаковым числом сторон n. При увеличении числа сторон их периметры Р1 и Р2 будут стремиться к длинам окружностей, т. е. к С1 и С2. Поэтому

Мы получили, что отношение длины окружности С к ее диаметру 2R есть величина постоянная для всех окружностей. Это отношение обозначается буквой π («пи» — первая буква древнегреческого слова «периметрон» — окружность). Так как для любой окружности C/2R = π, то длина окружности С = 2 πR.

По числу букв в словах фразы «Это я знаю и помню прекрасно, но многие цифры мне лишни, напрасны» можно воспроизвести 12 первых знаков числа π: π = 3,14159265358….

7. Формула площади круга. Вывод.

Теорема. Площадь круга S = πR2.

8. Длина дуги и площадь сектора.

Длина дуги и площадь сектора пропорциональны градусной мере дуги или центрального угла сектора:

Формулы длины дуги и площади сектора не нужно запоминать — они находятся из логически понятной пропорции:

  • а) длина дуги составляет от длины окружности такую же часть, какую составляет ее градусная мера от 360°;
  • б) площадь сектора составляет от площади круга такую же часть, какую составляет его центральный угол (его дуга) от 360°.

9. Площадь сегмента.

Площадь сегмента равна площади сектора минус или плюс площадь равнобедренного треугольника, образованного радиусами этого сектора. Минус — если центральный угол сектора меньше 180°, и плюс — если больше 180°. Если центральный угол равен 180°, то этот сегмент — полукруг, и его площадь равна πR2/2.

10. Радианная мера угла.

Радианом называется центральный угол, опирающийся на дугу окружности, равную 1 радиусу.

Так как длина окружности С = 2πR, то в окружности укладывается радиусов (≈ 6,28 радиуса), а в полуокружности — π радиусов (≈3,14 радиуса).

2π радиан = 360°.  ⇒  π радиан = 180°.  ⇒  1 радиан = 180°/π ≈ 57°

При расчетах слово «радиан» не пишут: π/2 =90°, π/3 = 60°, π/4 =45°, π/6 = 30°.

ЭТО НУЖНО ЗНАТЬ !

Это опорный конспект № 4 по геометрии для 9 класса «Правильные многоугольники». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D0%B9-%D0%BA%D0%BE%D0%BD%D1%81%D0%BF%D0%B5%D0%BA%D1%82-4-%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D1%83%D0%B3/

Многоугольники. Подробная теория с примерами

Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Многоугольник – это замкнутая линия, которая образовывается, если взять   каких-либо точек   и соединить их последовательно отрезками.

  • Точки   – вершины многоугольника.
  • Отрезки   – стороны многоугольника.

При этом смежные стороны (имеющие общую вершину) не должны лежать на одной прямой, а несмежные стороны не должны иметь общих точек (то есть не должны пересекаться).

Многоугольник с   сторонами называют  -угольником.

Произвольные многоугольники

Давай-ка нарисуем, какие бывают многоугольники.

А теперь вопрос: какой из этих многоугольников выпадает из ряда?

Посмотри внимательно на второй многоугольник – он по-существу отличается от всех остальных. Чем же? Он не выпуклый. Это конечно математическое название, но с человеческой интуицией не расходится.

Ну вот, а мы будем рассматривать только выпуклые многоугольники, то есть такие, как 1),3),4) и т.п.

Итак, основной факт:

В любом многоугольнике сумма внутренних углов равна  , где буква « » означает число углов многоугольника.

Давай сразу к примерам:

Шестиугольник

Ах да, про треугольник забыли.

Треугольник

А теперь давай все-таки разберемся, откуда же взялась формула  . Зачем? Понимаешь, приемчик, который мы сейчас применим, часто оказывается полезным при решении разных задач. Несмотря на то, что теорема о сумме углов многоугольника верна для всякого многоугольника, доказательство красивое и простое только для выпуклых многоугольников. Итак, давай разделим многоугольник на треугольники.

Вот так: из одной точки проведем все диагонали, что можно. Сколько их будет? Считаем:

Всего вершин:   Из вершины   можем провести диагонали во все вершины, кроме:

  • Самой вершины  
  • Вершины  
  • Вершины  

Значит всего диагоналей  . А на сколько треугольников распался наш многоугольник?

Представь себе: на  . Порисуй, посчитай – удостоверься, что треугольников оказывается ровно на один больше.

Итак, у нас ровно   треугольника. И сумма углов многоугольника просто равна сумме углов треугольников, на которые мы разбили многоугольник. Чему равна сумма углов треугольника? Помнишь? Конечно  .

Ну вот,   треугольника, в каждом по  , значит:

Сумма углов многоугольника равна   

Что же из этого может оказаться полезным? А вот что:

  1. Разделение на треугольники.
  2. Осознание того, что если провести какую-нибудь диагональ, то получится два новых многоугольника, сумма углов которых равна сумме углов большого многоугольника.

Вот смотри, был  -угольник:

Его сумма углов  . Провели диагональ, скажем  :

Получился пятиугольник   и семиугольник  . Сумма углов   равна  , а сумма углов   равна  . А вместе :   – все сошлось! Ну и на этом о произвольных многоугольниках – хватит.

Правильные многоугольники

Многоугольник называется правильным, если все его углы и все его стороны равны.

Так, например: квадрат – правильный четырехугольник, а вот прямоугольник – нет, хоть и все углы у него равные, и ромб – нет, хоть и все стороны равны. Нужно непременно, чтобы все углы и все стороны были равны.

Первый вопрос:

А можно ли найти величину одного (а значит и всех) угла правильного многоугольника?

И ответ: можно!

Давай посмотрим на примере.

Пусть есть, скажем, правильный восьмиугольник:

Сумма всех его углов равна  . А сколько всего углов? Восемь конечно, и они все одинаковые.

Значит любой угол, скажем   можно найти:

 .

Что мы еще должны знать?

Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

При этом центры этих окружностей совпадают.

Смотри как это выглядит!

И более того, всегда можно посчитать соотношение между радиусом вписанной и описанной окружностей.

Давай опять на примере восьмиугольника. Посмотри на  . В нем  

Значит,   – и это не только в восьмиугольнике!

Чему же равен в нашем случае  ?

Ровно половине  , представь себе!

Значит  . Смешно? Но так и есть! Поэтому для восьмиугольника  .

Может возникнуть еще один вопрос: а можно ли посчитать углы «около» точки  ? И тот же ответ: конечно можно! Опять рассмотрим наш восьмиугольник. Вот мы хотим найти   (то есть  ).

Мы знаем, что в   сумма углов равна  . Значит:

Потому  

И так можно все находить не только для восьмиугольника, но и для любого правильного многоугольника.

МНОГОУГОЛЬНИКИ. КОРОТКО О ГЛАВНОМ

Многоугольник – это замкнутая линия, которая образовывается, если взять   каких-либо точек   и соединить их последовательно отрезками.

  • Точки   – вершины многоугольника.
  • Отрезки   – стороны многоугольника.

Многоугольник с   сторонами называют  -угольником.

Например: многоугольник c   сторонами называют четырехугольником, многоугольник с   сторонами – шестиугольником и так далее по аналогии.

ЧетырехугольникШестиугольник
  • Выпуклый многоугольник – многоугольник лежащий по одну сторону от любой прямой, соединяющей его соседние вершины.

Сумма внутренних углов выпуклого n-угольника равна   или  , где   – внутренний угол многоугольника.

Правильный выпуклый многоугольник – многоугольник все стороны и внутренние углы которого равны.

Внутренний угол правильного  -угольника равен  .

  • Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и окружности, описанной около него, совпадают.

Если многоугольник такой, что в него можно вписать окружность, то его площадь выражается формулой:  , где  .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене “чашка кофе в месяц”, 

А также получить бессрочный доступ к учебнику “YouClever”, Программе подготовки (решебнику) “100gia”, неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

 

Источник: https://youclever.org/book/mnogougolniki-2

Правильный многоугольник. Число сторон правильного многоугольника

Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

Треугольник, квадрат, шестиугольник – эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же геометрические фигуры. Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон.

Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°.

Через радиус окружности можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой правильный n-угольник состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры.

У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα : 2.

Равносторонний треугольник – это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон.

Для этого будем использовать способ нахождения через формулу а = х : cosα, где х – медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х : cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота.

При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х : cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c : 2=√(х : cosα)2 – (х2) = √x2 (1 – cos2α) : cos2α = x ∙ tgα. Тогда c = 2xtgα.

Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам.

Изначально его значение было 90 градусов. Таким образом, после деления образуются два прямоугольных треугольника. Их углы при основании будут равны 45 градусов.

Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2 : 2, где е – это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность.

Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а : 2tg (360o : 2n), где а – длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны.

Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а – значение стороны, а n – количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см.

Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной.

По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а – сторона. Приведем пример.

Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры.

Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного равностороннего треугольника можно найти по формуле Р = 3а, где а – длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр.

Его можно найти, применяя формулу Р = а + в + с, где а и в – равные стороны, а с – основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а2 + в2 = √16+16 = √32 = 5,65 см.

Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов.

Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников.

Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 – 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника.

Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰ : 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом.

Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом.

Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n – 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике.

Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n – 2) : n = 3,14(15 – 2) : 15 = 3,14 ∙ 13 : 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах.

Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам.

Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ – 90⁰ = 90⁰. Как мы видим, найти его несложно.

Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Источник: https://FB.ru/article/135300/pravilnyiy-mnogougolnik-chislo-storon-pravilnogo-mnogougolnika

Геометрическая фигура многоугольник

Как выглядит многоугольник у которого 3 вершины. Правильный многоугольник. Число сторон правильного многоугольника

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех.

Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника.

В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон, по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков — четырехугольником, из пяти — пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку — по часовой стрелке или против нее.

  • Основные понятия
  • Виды фигур
    • Треугольник
    • Четырехугольник

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

  1. Если вершины являются концами одной стороны, они называются соседними.
  2. Если отрезок соединяет между собой несоседние вершины, то он имеет название диагонали. У треугольника не может быть диагоналей.
  3. Внутренний угол — это угол при одной из вершин, который образован двумя его сторонами, сходящимися в этой точке. Он всегда располагается во внутренней области геометрической фигуры. Если многоугольник невыпуклый, его размер может превосходить 180 градусов.
  4. Внешний угол при определенной вершине — это угол смежный с внутренним при ней же. Иными словами, внешним углом можно считать разность между 180° и величиной внутреннего угла.
  5. Сумма величин всех отрезков носит название периметра.
  6. Если все стороны и все углы равны — он носит название правильного. Правильными могут быть только выпуклые.

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

  1. Многоугольник называется плоским, если ограничивает конечную часть плоскости. Эта геометрическая фигура может быть вписанной в окружность или описанной вокруг окружности.
  2. Выпуклым называется n-угольник, который соответствует одному из условий, приведенных ниже.
  3. Фигура расположена по одну сторону от прямой линии, которая соединяет две соседних вершины.
  4. Эта фигура служит общей частью или пересечением нескольких полуплоскостей.
  5. Диагонали располагаются внутри многоугольника.
  6. Если концы отрезка располагаются в точках, которые принадлежат многоугольнику, весь отрезок принадлежит ему.
  7. Фигура может называться правильной, если у нее все отрезки и все углы равны. Примерами могут служить квадрат, равносторонний треугольник или правильный пятиугольник.
  8. Если n-угольник невыпуклый, все стороны и углы его равны, а вершины совпали с таковыми правильного n-угольника, он называется звездчатым. У таких фигур могут иметься самопересечения. Примерами могут служить пентаграмма или гексаграмма.
  9. Треугольник или четырехугольник называется вписанным в окружность, когда все его вершины располагаются внутри одной окружности. Если же стороны этой фигуры имеют точки соприкосновения с окружностью, это многоугольник описанным около некоторой окружности.

Любой выпуклый n-угольник можно поделить на треугольники. При этом количество треугольников бывает меньше количества сторон на 2.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.