Каким символом обозначается диаметр

Содержание

Высота ширина длина

Каким символом обозначается диаметр

Решая геометрические задачи, ученики сталкиваются с вопросом: как правильно обозначить те или иные части чертежа? Например, высоту треугольника, ширину прямоугольника, размеры бассейна. Подобные обозначения мы найдем и в физических задачах: длина маятника, высота, с которой тело начинает падать… Поэтому следует знать некоторые правила….

Как обозначаются различные параметры

В единой системе измерения используется обозначение латинскими буквами:

  • длину буквой l, если речь идет об одной прямой линии: маятнике, рычаге, отрезке, прямой. Но если речь идет о геометрической фигуре, например, прямоугольнике, то используется А,
  • высоту или глубину – h,
  • ширину – В.

Что такое система СИ, ученики узнают лишь в средней школе, поэтому обычно в младших классах специального обозначениям для этих величин не вводят.

Как обозначить глубину?

Почему же для высоты и глубины применяется одна и та же буква? Если вы построите чертеж параллелепипеда, то здесь вы отметите высоту фигуры.

А если составить чертеж прямоугольного бассейна того же размера, что и параллелепипед, то обозначается глубина. Таким образом, можно сказать, высота и глубина в этом случае будут одной величиной.

Внимание! Высота и глубина – две величины, которые обозначают один и тот же перпендикуляр, соединяющий две противоположные плоскости.

Понятие «глубина» встречается и в географии. На картах она отображается цветом. Если речь идет о водных просторах, то чем темнее синий, цвет, тем больше глубина, а если речь идет о суше, то низменности обозначаются темно-зеленым цветом.

В черчении эта величина обозначается литерой S. Она позволяет создать полное восприятие объекта иногда даже с одним видом.

Что бывает длинным

Что же такое длина и как обозначается этот показатель? Она указывает расстояние от точки до точки, то есть размер отрезка. В геометрических задачах его принято обозначать как А. В стереометрии ее могут обозначать и А, и l (например, в задачах, где встречается прямая, пересекающая плоскость).

В физике же длина маятника, плеча рычага и т.д. в «Дано» обозначается буквой l, так как речь идет об отдельной прямой.

Отличие длины от высоты

Длина – это величина, которая характеризует протяженность линии.

А высота – это перпендикуляр, опущенный на противолежащую плоскость.

То есть можно сделать вывод, что длина от высоты отличается тем, что является частью фигуры, совпадая с ее гранью, а высота получается в результате дополнительного построения на чертеже.

Высоту проводят для того, чтобы получить новые данные для решения задач, а также новых фигур в составе исходной.

Вот такой ширины

Ширина предмета необходима для того, чтобы понять форму как двумерного, так и трехмерного объекта. Как правило, она обозначается буквой В.

Измеряется ширина в метрах (по СИ). Но если предмет слишком мал, то для удобства используют более мелкие единицы измерения:

  • дециметры,
  • сантиметры,
  • миллиметры,
  • микрометры и т.д.

А если предмет слишком крупный, то пишутся такие приставки:

  • Кило- (10³),
  • Мега- (106),
  • Гига- (109),
  • Тера- (1012) и т.д.

Разумеется, такие крупные единицы измерения необходимы, например, для астрономии. Также они применяются в квантовой физике, микробиологии и так далее.

Как называются стороны прямоугольника?

В отличие от квадрата, стороны прямоугольника попарно равны и параллельны.

Это значит, что стороны, образующие углы различны.

Как правило, более длинную сторону прямоугольника называют длиной, а ширина прямоугольника это его короткая сторона.

Важно! Зная такие данные, как длина и ширина прямоугольника, можно найти его периметр, площадь, длину диагоналей и угол между ними. Вокруг прямоугольника всегда можно описать окружность. Эти свойства работают и в обратном направлении.

В чем измеряются размеры длины, ширины и высоты по си

По единой системе измерения длина, высота и ширина измеряются в метрах. Но иногда, если это дробное или многозначное число, для удобства в вычислениях используют кратные единицы измерения.

Для того чтобы знать, как правильно переводить единицы измерения в более крупные или же наоборот мелкие, необходимо знать значения приставок.

  • Дека 101,
  • Гекто 102,
  • Кило 103,
  • Мега 106,
  • Гига 109,
  • Деци – 10-1,
  • Санти – 10-2,
  • Милли – 10-3,
  • Микро 10-6,
  • Нано – 10-9.

После подсчетов эти единицы должны быть переведены в метры.

Существуют также внесистемные единицы, но они встречаются очень редко:

  • миля – 1,6 км,
  • фут – 12 дюймов – 0,3048 м,
  • ярд – 36 дюймов – 91,44 мм,
  • дюйм – 25,4 мм и т.д.

При решении задач такие единицы должны быть переведены в метры.

При выполнении геометрических заданий единицам измерения не уделяют особого внимания, главное, чтобы они были сопоставимы

(если вы производите подсчеты в сантиметрах, значит, все величины необходимо перевести в сантиметры).

А при решении физических задач ответ должен быть дан в метрах в соответствии с единой системой измерения.

Обозначения длины, ширины, высоты в геометрии

Измеряем геометрические параметры

Вывод

Теперь вы знаете, какой буквой обозначается длина, в чем измеряется ширина прямоугольника, и сможете сами объяснить любому, как обозначаются различные параметры.

! Легкие правила округления чисел после запятой

Источник: https://tvercult.ru/nauka/kak-pravilno-pishutsya-razmeryi-vyisota-shirina-dlina-oboznacheniya-latinskimi-bukvami

Геометрия. Урок 5. Окружность

Каким символом обозначается диаметр

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

-уроки на канале Ёжику Понятно.

страницы:

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности.

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности.

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается. ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается. ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны.

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

M N – диаметр.

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ).

Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром.

Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

∪ A B = ∪ C D = α

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

l = 2 π R

Длина дуги окружности, на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Источник: https://epmat.ru/modul-geometriya/urok-5-okruzhnosti/

Каким символом обозначается диаметр

Каким символом обозначается диаметр

При написании технических текстов или в чертежах часто нужно вставлять знак диаметра. В черчении его еще называют знак окружности. На клавиатуре такого знака не предусмотрено, поэтому возникает проблема. Рассмотрим несколько способов, как вставить символ диаметра.

Обозначение диаметра выглядит так: Ø или ø . Это латинская буква O с диагональным штрихом.

Способ 1: скопировать и вставить

Выделите знак Ø , скопируйте и вставьте в Word, Excel или AutoCAD.

Способ 2: кнопка дополнительные символы

Во всех программах Microsoft на вкладке Вставка есть кнопка дополнительные символы. Нажав на неё можно выбрать и вставить в текст символ диаметра.

Это же окно открывается через верхнюю панель меню «Вставка – Дополнительные символы».

Если символ нужно вставлять часто, для экономии времени настройте на него сочетание клавиш или автозамену. Кнопки для настройки этих опций находятся под списком всех символов.

Способ 3: раскладка Бирмана

Илья Бирман создал раскладку для клавиатуры, которая помогает вставлять часто используемые символы с помощью клавиатуры. Чтобы воспользоваться ей, скачайте и установите ее на компьютер (Windows или Mac). После установки активируйте раскладку в настройках «Панели управления», об этом подробно написано на странице скачивания.

Для вставки знака диаметра нажмите правый Alt + d .

Чтобы не забыть все сочетания клавиш, есть шпаргалка:

Если символ на клавише нарисован снизу, нужно дополнительно нажимать Shift .

Способ 4: сочетание клавиш

Зажмите клавишу Alt и поочередно введите код 0216 . Цифры обязательно вводите на цифровом блоке (справа на клавиатуре), иначе ничего не получится. Поэтому такой способ не подойдет для владельцев некоторых ноутбуков.

И в чем ее отличие от круга. Возьмите ручку или цвета и нарисуйте на листке бумаги обычный круг. Закрасьте всю середину полученной фигуры синим карандашом. Красный контур, обозначающий границы фигуры, – это окружность. А вот синее содержимое внутри нее – и есть круг.

Размеры круга и окружности определяются диаметром. На красной линии, обозначающей окружность, отметьте две точки таким образом, чтобы они оказались зеркальным отражением друг друга. Соедините их линией. Отрезок обязательно пройдет через точку в центре окружности. Этот отрезок, соединяющий противоположные части окружности, и называется в геометрии диаметром.

Отрезок, который тянется не через центр окружности, но смыкается с ней противоположными концами, называется хордой. Следовательно, хорда, пролегающая через точку центра окружности, и является ее диаметром.

Обозначается диаметр латинской буквой D. Находить диаметр окружности можно по таким значениям, как площадь, длина и радиус круга.

Расстояние от центральной точки до точки, отложенной на окружности, называется радиусом и обозначается буквой R. Знание величины радиуса помогает вычислить диаметр окружности одним несложным действием:

К примеру, радиус – 7 см. Умножаем 7 см на 2 и получаем величину, равную 14 см. Ответ: D заданной фигуры равен 14 см.

Иногда приходится определять диаметр окружности лишь по ее длине. Здесь необходимо применить специальную формулу, помогающую определить Формула L = 2 Пи * R, где 2 – это неизменная величина (константа), а Пи = 3,14. А так как известно, что R = D * 2, то формулу можно представить и другим способом

Данное выражение применимо и как формула диаметра окружности. Подставив известные в задаче величины, решаем уравнение с одним неизвестным. Допустим, длина равна 7 м. Следовательно:

Ответ: диаметр равен 21,98 метрам.

Если известно значение площади, то также можно определить диаметр окружности. Формула, которая применяется в данном случае, выглядит так:

D = 2 * (S / Пи) * (1 / 2)

S – в данном случае Допустим, в задаче она равна 30 кв. м. Получаем:

D = 2 * (30 / 3, 14) * (1 / 2) D = 9, 55414

При обозначенной в задаче величине, равной объему (V) шара, применяется следующая формула нахождения диаметра: D = (6 V / Пи) * 1 / 3.

Иногда приходится находить диаметр окружности, вписанной в треугольник. Для этого по формуле находим радиус представленной окружности:

R = S / p (S – площадь заданного треугольника, а p – периметр, разделенный на 2).

Полученный результат увеличиваем вдвое, учитывая, что D = 2 * R.

Нередко находить диаметр окружности приходится и в быту. К примеру, при определении что равносильно его диаметру. Для этого необходимо обмотать палец потенциального обладателя кольца ниткой. Отметить точки соприкосновения двух концов. Измерить линейкой длину от точки до точки.

Полученное значение умножаем на 3,14, следуя формуле определения диаметра при известной длине. Так что, утверждение о том, что познания в геометрии и алгебре в жизни не пригодятся, не всегда соответствует действительности.

А это является серьезным поводом для того, чтобы более ответственно относиться к школьным предметам.

Нас окружает множество предметов. И многие из них имеют круглую форму. Она задана им для удобного использования. Взять, например, колесо. Если бы оно было изготовлено в форме квадрата, то как бы катилось по дороге?

Для того чтобы изготовить предмет круглой формы, нужно знать, как выглядит формула длины окружности через диаметр. Для этого сначала определим, что же представляет собой это понятие.

Круг и окружность

Окружностью является множество точек, которые размещены на равном расстоянии от основной точки – центра. Это расстояние называется радиусом.

Расстояние между двумя точками на данной линии называется хордой. Помимо того, если хорда проходит через основную точку (центр), тогда она называется диаметром.

А теперь рассмотрим, что такое круг. Совокупность всех точек, которые находятся внутри очертания, называется кругом.

Что такое длина окружности?

После того как мы рассмотрели все определения, мы можем высчитывать диаметр окружности. Формула будет рассмотрена немного позже.

Для начала мы попробуем измерить длину очертания стакана. Для этого мы обмотаем его ниткой, затем ее измерим линейкой и узнаем приблизительную длину воображаемой линии вокруг стакана. Потому что размер зависит от правильного измерения предмета, а данный способ не является надежным. Но тем не менее сделать точные измерения вполне возможно.

Для этого опять вспомним о колесе. Неоднократно мы видели, что если увеличить спицу в колесе (радиус), то увеличится и длина обода колеса (окружности). И так же при уменьшении радиуса окружности уменьшается и длина обода.

Если внимательно проследить за этими изменениями, то увидим, что длина воображаемой круглой линии пропорциональна ее радиусу. И данное число является постоянным. Дальше рассмотрим, как определяется диаметр окружности: формула для этого применится в примере ниже. И рассмотрим ее, следуя шаг за шагом.

Формула окружности через диаметр

Поскольку длина очертания пропорциональна к радиусу, то и соответственно пропорциональна диаметру. Поэтому ее длину мы условно означим буквой C, диаметр – d. Поскольку соотношение длины очертания и диаметра – постоянное число, то его можно определить.

Проделав все подсчеты, мы определим число, которое приблизительно равно 3,1415… По той причине, что при подсчетах конкретное число не получилось, то обозначим его буквой π. Этот значок нам пригодится для того, чтобы была выведена формула длины окружности через диаметр.

Проведем воображаемую линию через центральную точку и измерим расстояние между двумя крайними. Это и будет диаметр. Если будем знать диаметр окружности, формула для определения длины ее самой будет выглядеть так: C = d * π.

Если мы будем определять длину разных очертаний, то если известен их диаметр, формула будет применена одна и та же. Поскольку знак π – это приблизительное исчисление, то и было решено умножать диаметр на 3,14 (число, округленное до сотых).

Как вычислить диаметр: формула

На этот раз попробуем с помощью данной формулы вычислить другие величины, помимо длины очертания. Чтобы вычислить диаметр по длине окружности, формула используется та же. Только для этого ее длину делим на π. Это будет выглядеть так d = C / π.

Рассмотрим, как эта формула действует на практике. К примеру, нам известна длина очертания колодца, следует вычислить его диаметр. Измерить его невозможно, поскольку из-за погодных условий нет доступа к нему. А задача у нас – изготовить крышку. Что будем делать в таком случае?

Нужно воспользоваться формулой. Возьмем длину очертания колодца – к примеру, 600 см. В формулу ставим конкретное число, а именно С = 600 / 3,14. В результате мы получим приблизительно 191 см. Округлим результат до 200 см. Затем с помощью циркуля рисуем круглую линию с радиусом в 100 см.

Поскольку очертание с большим диаметром нужно чертить соответствующим циркулем, то такой инструмент можно изготовить самому. Для этого возьмем рейку нужной длины и на каждом конце вбиваем по гвоздю. Устанавливаем один гвоздь в заготовку и слегка его вбиваем, для того чтобы он не сдвинулся с намеченного места. А с помощью второго чертим линию. Приспособление очень простое и удобное.

Современные технологии позволяют для вычисления длины очертания использовать онлайн-калькулятор. Для этого нужно всего лишь ввести диаметр окружности. Формула будет применена автоматически. Так же можно вычислять длину окружности с помощью радиуса. Кроме того, если вы знаете длину окружности, онлайн-калькулятор вычисляет радиус и диаметр с помощью данной формулы.

Диаметр в изначальном значении — это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка.

Диаметр равен двум радиусам: D = 2R.

Радиус(лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Радиус составляет половину диаметра.

Диаметр геометрических фигур (окружности, круга, сферы, шара)

Диаметр— это хорда (отрезок, соединяющий две точки на окружности (сфере, поверхности шара) и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через центр этой окружности; такая хорда имеет максимальную длину.

В круге все диаметры равны и делят круг и все перпендикулярные хорды пополам. В эллипсе лишь два диаметра: самый большой и самый малый, перпендикулярные между собой, они делят эллипс пополам. В шаре, сфероиде, эллипсоиде и подобным геометрическим фигурам, диаметр = плоскость, проходит через центр и делит все перпендикулярные плоскости пополам.

Символ диаметра

Символ диаметра «Ø» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀).

Символ диаметра не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства, например, приложение «Таблица символов» в Windows, программу «Таблица символов Юникода» (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т.д. Специализорованные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов %%c (буква c — латинская) или U+2205 в текстовой строке.

Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты, например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.

Допускается обозначать диаметр буквой D.

Следует отличать символ диаметра «Ø» от других похожих на него символов:

  • «ø» — строчная перечёркнутая латинская буква O (используется в датском, норвежском и фарерском алфавитах);
  • «∅» — символы пустого множества, в свою очередь похожие на «Ø» (заглавную перечёркнутую латинскую букву O) или на перечёркнутый ноль;
  • «Φ» — греческая заглавная буква «фи», кириллическая буква «эф».

Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты:

  • Под диаметром конического сечения понимается прямая, проходящая через середины двух параллельных хорд.
  • Под диаметром метрического пространства понимается точная верхняя грань расстояний между парами его точек. В частности:
    • диаметр графа — это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга;
    • диаметр геометрической фигуры — максимальное расстояние между точками этой фигуры.

Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!

DN – Стандарт обозначающий условный внутренний диаметр.

PN – Стандарт обозначающий номинальное давление.

Что такое Ду?

Ду – образовано от двух слов: Диаметр и Условный. Ду = DN. Ду тоже самое что DN. Просто DN более международный стандарт. Ду – русскоязычное представление DN. Сейчас категорически нужно отказаться от такого наименования Ду.

Что такое DN?

DN – Cтандартизованное представление диаметра. ГОСТ 28338-89 и ГОСТ Р 52720

Номинальный диаметр DN (диаметр условного прохода; условный проход; номинальный размер; условный диаметр; номинальный проход): Параметр, применяемый для трубопроводных систем в качестве характеристики присоединяемых частей арматуры.

Примечание – Номинальный диаметр приблизительно равен внутреннему диаметру присоединяемого трубопровода, выраженному в миллиметрах и соответствующему ближайшему значению из ряда чисел, принятых в установленном порядке.

В чем обычно измеряется DN?

По условиям стандарта вроде бы она не имеет строгой привязки к единице измерения (написано в документах). Но она обозначает именно размер диаметра. А диаметр измеряется длиной.

И потому что единица измерения длины может быть разным. Например, дюйм, фут, метр и тому подобное. Для Российских документов мы просто по умолчанию измеряем в мм. Хотя в документах написано, что она все таки измеряется в мм.

ГОСТ 28338-89. Но не имеет единицу измерения:

Источник: https://globefox.ru/kakim-simvolom-oboznachaetsya-diametr/

Символ, обозначение и значок диаметра: три способа его вставки

Каким символом обозначается диаметр

На компьютерной клавиатуре присутствуют не все символы. Нет на ней и символа диаметра. Общепринятое обозначение диаметра выглядит следующим образом – “Ø”. Но при этом существует масса способов вставить его во многих различных приложениях.

Наиболее популярным среди них является использование кодов ASCII. Второй способ связан с офисным пакетом компании Microsoft и работает только там. Третий метод это применение буфера обмена.

Для его исполнения нужен непосредственно сам значок диаметра, который при помощи функции “копирования” и “вставки” будет вставлен в нужное приложение.

Все способы будут подробно рассмотрены и представлены в этой статье.

В каких ситуациях появляется потребность символа диаметра?

Существует масса ситуаций, при которых появляется такая потребность вставить знак “Ø” в нужный электронный файл.

Для примера, он может потребоваться при составлении чертежей, детальном оформлении прайс-листов, оформлении рекламных продуктов или обозначения трубных изделий или запорной арматуры.

Ученики, студенты или работники всяческих учреждений, предприятий либо организаций повседневно используют данный знак в процессе своей учебной, либо трудовой деятельности.

Перечислять примеры применения значка диаметра можно бесконечно долго, но и так понятно, что в некоторых ситуациях без него приходится достаточно трудно либо не комфортно. Именно поэтому далее по тексту мы рассмотрим три способа вставки символа диаметра в электронный документ.

Первый способ

Самым популярным способом можно назвать использование кодов ASCII. Он может быть осуществлен непосредственно самой ОС Windows. Для его реализации важно знать код – “0216”, который в таблице кодов ASCII распознается как знак “Ø”. Алгоритм ввода будет таковым:

  1. Выбираем язык ввода “английский”.
  2. Следим за тем, чтобы клавиша “Num Lock” была включена, если сверху кнопки она не горит, то нужно ее включить.
  3. После чего заходим в наше приложение. Следующим действием наводим наш указатель “мыши” (стрелочку) на рабочую зону и кликаем один раз левой кнопкой. Курсор должен замигать.
  4. Теперь нажимаем клавишу “Alt” (неважно с какой стороны, слева или справа). После чего, не отжимая ее, на клавиатуре справа нажимаем 02 16. Теперь отпускаем все клавиши, после чего появится значок диаметра.

Главное достоинство данного способа это то, что он универсален. Он может работать во многих существующих приложениях. Особенность способа состоит в том что сам символ, в качестве исходника не нужен. Недостаток данного метода в том, что всегда нужно знать код.

Второй способ

Программа Word и другие приложения взаимозаменяемый метод ввода “Ø” связан с определенным набором таких программных приложений, как: Microsoft Office Word, Excel и других. Для примера введем знак диаметра в ” Word”. В других случаях алгоритм ввода будет аналогичным.

Во время работы заходим на панель инструментов на вкладку “Вставка”. Она расположена в верхней части экрана между закладками “” и “Разметка страницы”. Наводим на эту вкладку курсор мыши и кликаем один раз левой кнопкой. После этого в правой части экрана видим панель “Символы”.

Там выбираем строку «Символ» и в появившемся списке нажимаем “Другие символы”. Все эти действия осуществляются правой кнопкой мышки.

Теперь можно наблюдать открывшееся окно вставки. Находим нужный нам знак “Ø” за счет прокрутки найденных символов. В этом нам поможет колесо мыши. После удачного поиска “Ø”, выделяем его одним нажатием левой кнопки мыши и кликаем кнопку “Вставить”.

После этого закрываем окно. Затем наверняка появиться значок диаметра в Word (в рабочей зоне). Отрицательная сторона данного способа в том, что он будет работать только в одной группе программных продуктов. Поэтому везде его применить невозможно.

Третий способ

Так же одним из способов вставки “Ø” является применение буфера обмена и использование функций “Копировать” и “Вставить”. Буфер обмена это определенная часть памяти компьютерной операционной системы, которая предназначена для временного хранения информации. Сначала требуется найти где-нибудь такой символ.

В качестве примера, можно значок диаметра вставить в ворд (word) в соответствии с вышеизложенным алгоритмом.

После чего его выделяем и копируем (по желанию можно использовать так называемые горячие клавиши “Ctrl”+”C”). Затем заходим в иное приложение и осуществляем действие вставки (“Ctrl”+”V”).

Отрицательная сторона данного способа заключается в том, что в любом случае нужен исходный символ. А так бывает далеко не всегда.

Каждый пользователь может выбрать для себя наиболее подходящий способ вставки символа (знака) диаметра – “Ø”, учитывая свой индивидуальный подход и персональные навыки.

В видео – наглядный пример, как вставить в Word значок диаметра.

Источник: https://LivePosts.ru/articles/hi-tech-at/informatsionnye-tehnologii/simvol-oboznachenie-i-znachok-diametra-tri-sposoba-ego-vstavki

Как правильно номинальный диаметр DN или условный проход Ду?

Каким символом обозначается диаметр

DN — Номинальный диаметр (nominal diameter).

Используется как характеристика соединяемых частей таких как: трубопроводная арматура, фитинги, соединения для различных видов трубопроводов.

Номинальный диаметр (округленный внутренний), не означает точный размер в миллиметрах и приблизительно равен значению внутреннего диаметра соединяемого трубопровода в миллиметрах (Определенно в ГОСТе 28338-89, соответствует ISO 6708-80).

Параметр был введён для уменьшения типоразмеров арматуры, трубопроводов и различных соединительных деталей было принято понятие условного прохода.

Согласно ГОСТу 28338-89 нужно обозначать буквами DN и числовым значением, которое выбирается из стандартного ряда.

Ранее применялось обозначение: Dy – Условный проход

Все ГОСТы, упомянутые в тексе на момент написания статьи 01.02.2018г – действующие

Указание номинального диаметра в зависимости от типа трубы

С указанием условного прохода для трубопроводной арматуры всё предельно просто. Указывается округлённый внутренний диаметр, например, так: DN20, но иногда может встречаться устаревшее обозначение: Ду20, или Dy20, по ранее действующему СЭВ 254-76.

Но вот с указанием для разных видов металлических и пластиковых труб, не всё так просто, и часто происходит путаница, связанная с неправильным указанием или неопределенностью, какой указан диаметр внешний или внутренний (условный проход).

И возникает вопрос, как правильно указывается диаметр трубы?
Далее приведены примеры правильного обозначения для некоторых видов трубопроводов.

Обозначение водогазопроводной трубы (Труба ВГП)

К водогазопроводным трубам (ВГП) относятся металлические сварные изделия, изготовленные из стали по ГОСТу 1050 и ГОСТу 380, а также другими утверждёнными регламентами.
Применяются:

  • В системах отопления зданий;
  • Различных видах водопроводов;
  • В конструкциях газопроводных систем и газопроводов;

Пример обозначений

Стальная труба, выпущенная по ГОСТу 3262-75, с условным проходом 32 миллиметра, и толщиной стенки 3,2 миллиметра.

То же самое только с муфтой.

Стальная ВГП с резьбой, цинковым покрытием, мерной длины.
И так далее.

Обозначение электросварных прямошовных труб

Прямошовные электросварные производятся из низколегированных или углеродистых видов стали.
Применяются для изготовления трубопроводов различного применения.

Пример обозначения

Стальная труба, выпущенная по ГОСТу 10704-91, с наружным диаметром 70.0 миллиметров, толщиной стенки 4.0 миллиметра, мерной длины (5000мм), II класс (точность изготовления по длине), из стали «СтЗсп» выпущенная по группе «В» ГОСТу 10705-80.

Указание диаметра бесшовных стальных труб

Стальные бесшовные трубы изготавливаются из легированных или углеродистых видов стали. Отсутствие швов повышает стойкость трубопровода к различным физическим воздействиям, таким как рабочая температура и номинальное давление.

Указание диаметров пластиковых труб

Пластиковые трубы и различные фитинги производятся из термопластов следующих видов:

Применяются для изготовления труб отопления, водопроводов горячей и холодной воды по ГОСТу 32415-2013.

Пример обозначения пластиковых труб и фитингов

Изготовленная из НПВХ, с номинальным наружным диаметром 25.0 миллиметров, номинальная толщина стенки 2,3 миллиметра, номинальным давлением PN25.

Условное обозначение пластиковых фитингов:

Муфта, изготовленная из НПВХ, для соединения трубопроводов с DN 63.0 миллиметра, соответствует SDR 13,6, номинальное расчётное давление PN16.

Условное графическое обозначение диаметров

При условных обозначениях в различных схемах и чертежах размер указывается в миллиметрах без указания единиц измерения (мм).

Номинальный диаметр трубопроводов (внутренний) обозначается знаком ∅ или буквами DN перед числом как показано на рисунке 1 а); б);

При указании внешнего диаметра трубы и толщины стенки ставиться знак ∅, затем указываются значения диаметра и толщины стенки, как показано на рисунке 1 в) г).

Источник: http://TehSpravka.org/armatura/vneshnij-i-vnutrennij-diametr-trub.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.