Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

Содержание

Конспект

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

Термодинамика – раздел физики, изучающий тела, находящиеся в состоянии термодинамического равновесия и явления, сопровождающие переходы между этими состояниями.

Термодинамическое равновесие – состояние тел (или частей тела), при котором остаются постоянными все величины, характеризующие эти тела (или части тела): объёмы, давления, расположение масс и др.

Температура – единственная физическая величина, всегда одинаковая у всех тел (или частей тела), находящихся в состоянии термодинамического равновесия.

Термометр – прибор для измерения температуры. Единица температуры – 1 кельвин (1 К). Также используется 1 °С, равный 1 К.

Теплообмен – переход внутренней энергии одного тела во внутреннюю энергию другого тела без совершения механической работы.

Количество теплоты – физическая величина, показывающая энергию, полученную (отданную) телом при теплообмене.

Калориметр – прибор для измерения количества теплоты. Единица количества теплоты – 1 джоуль (1 Дж).

Удельная теплоемкость вещества – физическая величина, показывающая количество теплоты, необходимое для изменения температуры 1 кг этого вещества на 1 °С. Единица удельной теплоёмкости – 1 Дж/(кг·°С).

Количество теплоты, полученное (отданное) телом при теплообмене, пропорционально массе тела и изменению его температуры. Коэффициент пропорциональности – удельная теплоёмкость вещества.

Превращение твёрдого тела в жидкость называют плавлением.Обратное явление называют отвердеванием. Если при этом получается кристаллическое тело, то отвердевание называют кристаллизацией.

Температура

Температурой плавления называют температуру, при которой нагреваемое кристаллическое тело тело начинает плавиться, и при этом одновременно существуют твёрдое и жидкое состояния его вещества.

Температурой кристаллизации называют температуру, при которой охлаждаемая жидкость начинает кристаллизоваться, и при этом одновременно существуют её твёрдое и жидкое состояния.

Как правило, температура кристаллизации вещества равна температуре его плавления. Температура плавления/кристаллизации вещества зависит от внешнего давления и других факторов.

Удельная теплота плавления – физическая величина, показывающая количество теплоты, необходимое для плавления или выделяющееся при кристаллизации 1 кг вещества, находящегося при температуре плавления/кристаллизации. Единица удельной теплоты плавления – 1 Дж/кг.

Количество теплоты, поглощаемое (выделяющееся) при плавлении (кристаллизации), пропорционально массе расплавившегося (кристаллизовавшегося) вещества. Коэффициент пропорциональности – удельная теплота плавления вещества.

Видами парообразования являются: испарение – парообразование, происходящее с поверхности жидкости; кипение – парообразование, происходящее по всему объёму жидкости вследствие возникновения и всплытия на поверхность пузырей пара; сублимация – парообразование, происходящее с поверхности твёрдого тела.

Температурой кипения называют температуру, при которой наблюдается кипение вещества (интенсивное парообразование по всему объёму этого вещества). Температура кипения зависит от внешнего давления и других факторов.

Удельная теплота парообразования – физическая величина, показывающая количество теплоты, необходимое для превращения в пар 1 кг вещества (как правило, при температуре кипения). Единица удельной теплоты парообразования – 1 Дж/кг.

Количество теплоты, поглощённое кипящей (или испаряющейся при постоянной температуре) жидкостью, прямо пропорционально массе образовавшегося пара. Коэффициент пропорциональности – удельная теплота парообразования вещества.

При охлаждении/кристаллизации/конденсации выделяется точно такое же количество теплоты, которое было затрачено для нагревания/плавления/парообразования вещества (если температуры и давления при прямом и обратном процессах соответствуют друг другу).Утверждение будет верным и наоборот.

Законы термодинамика

Первый закон термодинамики устанавливает равенство между изменением внутренней энергии тела и суммой полученной телом теплоты и совершённой над ним работы.

Тепловой двигатель – периодически действующее устройство, служащее для превращения внутренней энергии рабочего тела (как правило, газа или пара) в механическую энергию.

Количество теплоты, выделяющееся при полном сгорании вещества (топлива), прямо пропорционально массе сгоревшего вещества (топлива). Коэффициент пропорциональности – удельная теплота сгорания топлива.

Известно три способа теплопередачи (теплообмена) – теплопроводность, конвекция и излучение. При теплопроводности теплота проникает через вещество без его перемещения (в случае отсутствия вещества теплопроводность является нулевой).

При конвекции теплота перемещается неравномерно нагретым движущимся веществом (в условиях, когда возможно возникновение архимедовой силы).

При излучении теплота передаётся через пространство или вещество в виде электромагнитных волн (для излучения наличие вещества не является обязательным, в отличие от первых двух способов теплопередачи).

Второй закон термодинамики гласит, что теплообмен самостоятельно протекает только в таком направлении, что температура менее нагретого тела возрастает, а более нагретого – уменьшается.

Дополнительные материалы по теме:

Конспект темы «Термодинамика. Теория, формулы, схемы». В учебных целях использованы цитаты из пособия «Физика в таблицах и схемах / Янчевская О.В. — СПб, Литера». Рекомендуем купить указанное пособие по ссылке (переход в Интернет-магазин).

Следующая тема по физике: «Электростатика. Теория, формулы, схемы»

Источник: https://uchitel.pro/%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0/

Самая удобная и увлекательная подготовка к ЕГЭ

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

В термодинамике, в отличие от механики, рассматривается не движение тела как целого, а лишь относительное изменение частей термодинамической системы, в результате которого меняется ее объем.

Рассмотрим работу газа при изобарическом расширении.

Вычислим работу, совершаемую газом при его действии на поршень с силой ${F'}↖{→}$, равной по величине и противоположной по направлению силе ${F'}↖{→}$, действующей на газ со стороны поршня: ${F'}↖{→}=-{F'}↖{→}$ (согласно третьему закону Ньютона), $F'=pS$, где $p$ — давление газа, а $S$ — площадь поверхности поршня. Если перемещение поршня $∆h$ в результате расширения мало, то давление газа можно считать постоянным и работа газа равна:

$A'=F'∆h=pS∆h=p∆V$

Если газ расширяется, он совершает положительную работу, та к как перемещение поршня совпадает по направлению с силой ${F'}↖{→}$. Если газ сжимается, то работа газа отрицательна, поскольку перемещение поршня противоположно силе ${F'}↖{→}$. В формуле $A'=F'∆h=pS∆h=p∆V$ появится знак «минус»: $∆V < 0$, поскольку $∆h < 0$.

Работа внешних сил $А$, наоборот, положительна при сжатии газа и отрицательна при расширении:

$A=-A'=-p∆V$

Совершая над газом положительную работу, внешние тела передают ему часть своей энергии. При расширении газа внешние тела отбирают у газа часть его энергии — работа внешних сил отрицательна.

На графике зависимости давления от объема $р(V)$ работа определяется как площадь, ограниченная кривой $р(V)$, осью $V$ и отрезками $ab$ и $cd$, равными давлениям $р_1$ в начальном ($V_1$) и $р_2$ в конечном ($V_2$) состояниях, как для изобарного, так и для изотермического процессов.

Первый закон термодинамики

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энергии для термодинамической системы.

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах — джоулях (как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Майером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Первый закон термодинамики формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

$∆U=A+Q$

где $∆U$ — изменение внутренней энергии, $А$ — работа внешних сил, $Q$ — количество теплоты, переданной системе.

Из $∆U=A+Q$ следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, $A=0$ и $Q=0$,а следовательно, $∆U=0$.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение ($∆U=A+Q$) записывается в виде:

$Q=∆U+A'$

где $А'$ — работа, совершаемая системой ($А'=-А$).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника, т. е. только за счет внутренней энергии.

Действительно, если к телу не поступает теплота ($Q=0$), то работа $А'$, согласно уравнению $Q=∆U+A'$, совершается только за счет убыли внутренней энергии $A'=-∆U$. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа, так и количество теплоты являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам.

Изохорный процесс. Зависимость $р(Т)$ на термодинамической диаграмме изображается изохорой.

Изохорный (изохорический) процесс — термодинмический процесс, происходящий в системе при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется ($∆V=0$), и, согласно первому началу термодинамики $Q=∆U+A'$,

$∆U=Q$

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа ($A=p∆V=0$) газом не совершается.

Если газ нагревается, то $Q > 0$ и $∆U > 0$, его внутренняя энергия увеличивается. При охлаждении газа $Q < 0$ и $∆U < 0$, внутренняя энергия уменьшается.

Изотермический процесс графически изображается изотермой.

Изотермический процесс — это термодинамический процесс, происходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется ($T=const$), то все переданное газу количество теплоты идет на совершение работы:

$Q=A'$

При получении газом теплоты ($Q > 0$) он совершает положительную работу ($А' > 0$). Если газ отдает тепло окружающей среде, $Q < 0$ и $А' < 0$. В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермическом процессе определяется площадью под кривой $р(V)$.

Изобарный процесс на термодинамической диаграмме изображается изобарой.

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением $p$.

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе согласно формуле $Q=∆U+A'$ передаваемое газу количество теплоты идет на изменение его внутренней энергии $∆U$ и на совершение им работы $A'$ при постоянном давлении:

$Q=∆U+A'$

Работа идеального газа определяется по графику зависимости $p(V)$ для изобарного процесса ($A'=p∆V$).

Для идеального газа при изобарном процессе объем пропорционален температуре, в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой ($Q=0$).

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия и может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики ($∆U=A+Q$), в адиабатной системе

$∆U=A$

где $А$ — работа внешних сил.

При адиабатном расширении газа $А < 0$.

Следовательно,

$∆U={i}/{2}·{m}/{M}R∆T < 0,$

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что давление газа уменьшается более резко, чем при изотермическом процессе.

На рисунке адиабата $1—2$, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема $V_1$ до $V_2$.

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Принцип действия тепловых двигателей

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики, тепловой двигатель может непрерывно совершать периодически повторяющуюся механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

  1. рабочее тело (газ или пар), совершающее работу;
  2. нагреватель, сообщающий энергию рабочему телу;
  3. холодильник, поглощающий часть энергии от рабочего тела.

Коэффициент полезного действия теплового двигателя

Согласно закону сохранения энергии, работа, совершаемая двигателем, равна:

$A'=|Q_1|-|Q_2|$

где $Q_1$ — количество теплоты, полученное от нагревателя, $Q_2$ — количество теплоты, отданное холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы $А'$, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

$η={A'}/{|Q_1|}={|Q_1|-|Q_2|}/{|Q_1|}=1-{|Q_2|}/{|Q_1|}$

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то $η < 1$.

КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При $T_1 – T_2=0$ двигатель не может работать.

Цикл Карно

Цикл Карно — это круговой обратимый процесс, состоящий из двух изотермических и двух адиабатических процессов.

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД $< 5%$)и поиски путей их усовершенствования.

Выбор двух изотермических и двух адиабатических процессов был обусловлен тем, что работа газа при изотермическом расширении совершается за счет внутренней энергии нагревателя, а при адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле исключен контакт тел с разной температурой, следовательно, исключена теплопередача без совершения работы.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процессы цикла. В процессе изотермического расширения ($1-2$) при температуре $Т_1$ работа совершается за счет изменения внутренней энергии нагревателя, т. е. за счет подведения к газу количества теплоты $Q_1$:

$A_{12}=Q_1.$ Охлаждение газа перед сжатием ($3-4$) происходит при адиабатном расширении ($2-3$). Изменение внутренней энергии $∆U_{23}$ при адиабатном процессе ($Q=0$) полностью преобразуется в механическую работу:

$A_{23}=-∆U_{23}$

Температура газа в результате адиабатического расширения ($2-3$) понижается до температуры холодильника $Т_2 < Т_1$. В процессе ($3-4$) газ изотермически сжимается, передавая холодильнику количество теплоты $Q_2$:

$A_{34}=Q_2,$

Цикл завершается процессом адиабатического сжатия ($4—1$), при котором газ нагревается до температуры $Т_1$.

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

$η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$

Суть формулы $η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$ выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Источник: https://examer.ru/ege_po_fizike/teoriya/rabota_v_termodinamike

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Источник: https://Zaochnik.ru/blog/osnovnye-formuly-termodinamiki-i-molekulyarnoj-fiziki-kotorye-vam-prigodyatsya/

Основные формулы термодинамики

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

В термодинамике изучают самые общие законы и физические процессы преобразований внутренней энергии. При этом считается, что любое материальное тело имеет тепловую энергию $U$, которая зависит от его температур.

Перед тем, как рассмотреть основные термодинамические формулы необходимо дать определение термодинамике.

Определение 1

Термодинамика – это обширный раздел физики, который исследует и описывает процессы, происходящие в системах, а также их состояния.

Указанное научное направление опирается на обобщенные факты, которые были получены опытным путем. Происходящие в термодинамических концепциях явления описываются посредством использования макроскопических величин.

В их список входят такие параметры, как:

  • давление;
  • температура;
  • концентрация;
  • энергия;
  • объем.

К отдельным молекулам данные параметры неприменимы, а сводятся к детальному описанию системы в общем ее виде.

Много решений, которые основаны на термодинамических законах, можно встретить в сфере электроэнергетики и тепловой техники.

Что и свидетельствует о понимании фазовых переходов, химических процессов и явлений переноса. В некотором роде термодинамика тесно “сотрудничает” с квантовой динамикой.

  • Курсовая работа 480 руб.
  • Реферат 260 руб.
  • Контрольная работа 230 руб.

Уравнение идеального газа в термодинамике

Рисунок 1. Работа в термодинамике. Автор24 — интернет-биржа студенческих работ

Определение 2

Идеальный газ – это некая идеализация, такая же, как и материальная точка.

Молекулы такого элемента являются материальными точками, а соударения частиц – абсолютно упругие и постоянные. В задачах по термодинамике реальные газы зачастую принимаются за идеальные. Так гораздо легче составлять формулы, и не нужно иметь дела с огромным количеством новых величин в уравнениях.

Итак, молекулы идеального газа движутся, а вот чтобы узнать с какой скоростью и массой, необходимо использовать уравнение состояния идеального газа, или формулу Клапейрона-Менделеева: $PV = \frac{m}{M}RT$. Здесь $m$ – масса исследуемого газа, $M$ – его изначальная молекулярная масса, $R$ – универсальная постоянная, равная 8,3144598 Дж/(моль*кг).

В этом аспекте массу идеального газа также можно вычислить, как произведение объема и плотности $m = pV$. Существует некая связь между средней кинетической энергией $E$ и давлением газа.

Эта взаимосвязь называется в физике основным уравнением молекулярно-кинетической теории и имеет вид: $p = \frac{2}{3}nE$, где $n$ – концентрация движущихся молекул по отношению к общему объему, $E$ – коэффициент средней кинетической энергии.

Первое начало термодинамики. Формулы для изопроцессов

Рисунок 2. Уравнение состояния идеального газа. Автор24 — интернет-биржа студенческих работ

Первый термодинамический закон гласит: количество внутренней теплоты, переданное газу, идёт только на изменение общей энергии газа $U$ и на совершение веществом работы $A$. Формула первого начала термодинамики записывается так: $Q = ΔU + A$.

как известно, с газом в системе всегда что-то происходит, ведь его можно сжать или нагреть. В данном случае необходимо рассмотреть такие процессы, которые протекают при одном стабильном параметре. Первое начало термодинамики в изотермическом случае, который протекает при постоянной температуре, задействует закон Бойля-Мариотта.

В результате изотермического процесса давление газа обратно пропорционально его изначальному объёму: $Q = A.$

Изохорный – наблюдается при постоянном объеме. Для этого явление применим закон Шарля, согласно которому, давление прямо пропорционально общей температуре. В изохорном процессе все подведенное к газу тепло идет на изменение его внутренней энергии и записывается в таком виде: $Q = ΔA.$

Изобарный процесс – происходит при постоянном давлении. Закон Гей-Люссака предполагает, что при неизменном давлении идеального газа его начальный объём прямо пропорционален итоговой температуре. При изобарном процессе тепло идет на совершение газом работы и на изменение внутреннего энергетического потенциала: $Q = \Delta U+p\Delta V.$

Формула теплоемкости и главная формула КПД в термодинамике

Рисунок 3. Количество теплоты. Автор24 — интернет-биржа студенческих работ

Замечание 1

Удельная теплоемкость в термодинамической системе всегда равна количеству теплоты, которое выделяется для нагревания одного килограмма действующего вещества на один градус Цельсия.

Уравнение теплоемкости записывается таким образом: $c = \frac{Q}{m\Delta t}$. Помимо указанного параметра, существует и молярная теплоемкость, которая работает при постоянном объеме и давлении.

Ее действия видно в следующей формуле: $C_v = \frac {i}{2}R$ где $i$ – количество степеней свободы молекул газа.

Тепловая машина, в самом простейшем случае, состоит из холодильника, нагревателя и рабочего материального тела. Нагреватель изначально сообщает тепло физическому веществу и совершает определенную работу, а затем постепенно охлаждается холодильником, и все повторяется по кругу. Типичным примером тепловой машины выступает двигатель внутреннего сгорания.

Коэффициент полезного действия теплового устройства вычисляется по формуле: $n = \frac {Q_h-Q_x }{Q_h }.$

При изучении основ и уравнений термодинамики следует понять, что на сегодняшний день существует два метода описания физических процессов, происходящих в макроскопических материальных телах: статистический и термодинамический.

Методы термодинамики и ее формулы позволяет раскрыть и описать смысл экспериментальных закономерностей в виде закона Менделеева-Клапейрона.

Важно понять, что в термодинамических концепциях, в отличие от систем молекулярной физики, не изучаются конкретные взаимодействия, происходящие с определенными молекулами или атомами, а рассматривается постоянные взаимопревращения и связь разнообразных видов теплоты, энергии и работы.

Уравнение состояния и его функции

Рисунок 4. Термодинамические уравнения состояния. Автор24 — интернет-биржа студенческих работ

При исследовании макросостояний применяются функции состояния, которые предполагают показатель, демонстрирующий определённые состояния термодинамического равновесия, независящий от предыстории концепции и метода её перехода в абсолютное состояние.

Основными функциями состояния при грамотном построении термодинамики являются:

  • внутренняя энергия;
  • энтропия;
  • температура;
  • термодинамические потенциалы.

Однако функции состояния в термодинамики не являются полностью независимыми, и для однородной системы любой термодинамический принцип может быть записан как выражение двух самостоятельных переменных. Такие функциональные взаимосвязи называются уравнениями общего состояния.

На сегодняшний день различают такие виды уравнений:

  • термическое уравнение состояние – определяющее связь между давлением, температурой и объёмом;
  • калорическое уравнение – выражающее внутренний энергетический потенциал, как функцию от объёма и температуры;
  • каноническое уравнение состояние – записываемое в качестве термодинамического потенциала в соответствующих переменных.

Знание уравнения состояния очень важно для использования на практике общих принципов термодинамики. Для каждой конкретной термодинамической концепции такие выражения определяются из опыта или способами статистической механики, и в пределах термодинамики оно считается заданным при изначальном определении системы.

Источник: https://spravochnick.ru/fizika/termodinamika/osnovnye_formuly_termodinamiki/

Тема 2. Молекулярная физика и термодинамика. – Материалы для подготовки к вступительным экзаменам в СГГА

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Работа в термодинамике определение

Основные понятия Количество вещества измеряется в молях (n). n – число молей

1 моль равен количеству вещества системы, содержащей столько же частиц, сколько атомов содержится в 0,012 кг углерода . Число молекул в одном моле вещества численно равно постоянной Авогадро NA. 

NA=6,022 1023 1/моль.

1 моль любого газа при нормальных условиях занимает объем V=2,24 10-2  м3. М – молярная масса (масса моля) – величина, равная отношению массы вещества m к количеству вещества n:
mo – масса одной молекулы, m – масса взятого количества вещества
 – число молекул в данном объеме.

Идеальный газ. Основное уравнение молекулярно-кинетической теории.

Основным уравнением молекулярно-кинетической теории газа является уравнение:

, р – давление газа на стенки сосуда, n – концентрация молекул, – средняя квадратичная скорость движения молекул. Давление газа р можно определить по формулам:
,- средняя кинетическая энергия поступательного движения молекул, Т – абсолютная температура, K=1,38 10-23 Дж/К – постоянная Больцмана., где =8,31 Дж/моль × К,   R – универсальная газовая постоянная
Т=373+to С,  to С – температура по Цельсию.
Например, t=27o С, Т=273+27=300 К.
Смесь газов Если в объеме V находится не один газ, а смесь газов, то давление газа р определяется законом Дальтона: смесь газов оказывает на стенки давление, равное сумме давлений каждого из газов, взятых в отдельности:, – давление, оказываемое на стенки 1-ым газом р1, вторым р2 и т.д. n – число молей смеси, .

Уравнение Клапейрона-Менделеева, изопроцессы.

Состояние идеального газа характеризуют давлением р, объемом V, температурой Т. [p]=Паскаль (Па), [V]=м3, [T]=Кельвин (К).

Уравнение состояния идеального газа:

, для одного моля газа const=R – универсальная газовая постоянная. – уравнение Менделеева-Клапейрона. Если масса m постоянная, то различные процессы, происходящие в газах, можно описать законами, вытекающими из уравнения Менделеева-Клапейрона.

1. Если m=const, T=const – изотермический процесс.

Уравнение процесса: 

График процесса: 

 

 2. Если m=const, V=const – изохорический процесс.

Уравнение процесса: .

График процесса: 

 3. Если m=const, p=const – изобарический процесс.

Уравнение процесса: 

График процесса:

4. Адиабатический процесс – процесс, протекающий без теплообмена с окружающей средой. Это очень быстрый процесс расширения или сжатия газа.

 Насыщенный пар, влажность.

Абсолютная влажность – давление р водяного пара, содержащегося в воздухе при данной температуре. Относительная влажность – отношение давления р водяного пара, содержащегося в воздухе при данной температуре, к давлению ро насыщенного водяного пара при той же температуре:

рo – табличное значение.
Точка росы – температура, при которой находящийся в воздухе водяной пар становится насыщенным.

Термодинамика

Термодинамика изучает наиболее общие закономерности превращения энергии, но не рассматривает молекулярного строения вещества.

Всякая физическая система, состоящая из огромного числа частиц – атомов, молекул, ионов и электронов, которые совершают беспорядочное тепловое движение и при взаимодействии между собой обмениваются энергией, называется термодинамической системой. Такими системами являются газы, жидкости и твердые тела.

Внутренняя энергия.

Термодинамическая система обладает внутренней энергией U. При переходе термодинамической системы из одного состояния в другое происходит изменение ее внутренней энергии.

Изменение внутренней энергии идеального газа равно изменению кинетической энергии теплового движения его частиц.

Изменение внутренней энергии DU при переходе системы из одного состояния в другое не зависит от процесса, по которому совершался переход.

Для одноатомного газа:

 – разность температур  в конце и начале процесса. Изменение внутренней энергии системы может происходить за счет двух различных процессов: совершения  над системой работы А/ и передачи ей теплоты Q.

Работа в термодинамике.

Работа зависит от процесса, по которому совершался переход системы из одного состояния в другое. При изобарическом процессе (p=const, m=const):  , – разность объемов   в конце и в начале процесса.Работа, совершаемая над системой внешними силами, и работа, совершаемая системой против внешних сил, равны по величине и противоположны по знаку: .

Первый закон термодинамики.

Закон сохранения энергии в термодинамике называют: первый закон термодинамики. Первый закон термодинамики:

А/ – работа, совершенная над системой внешними силами, А – работа, совершенная системой,  – разность внутренних энергий  конечного и начального состояний. – первый закон термодинамики. Первый закон термодинамики формулируется следующим образом: Количество теплоты (Q), сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами. Применим первый закон термодинамики к различным изопроцессам. а)  Изотермический процесс (T=const, m=const).

Так как , то , т.е. изменение внутренней энергии не происходит, значит:

– все сообщенное системе тепло затрачивается на работу, совершаемую системой против внешних сил. б) Изохорический процесс (V=const, m=const).
Так как объем не изменяется, то работа системы равна 0 (А=0) и  – все сообщенное системе тепло затричивается на изменение внутренней энергии. в) Изобарический процесс (p=const, m=const). г) Адиабатический процесс (m=const, Q=0). – работа совершается системой за счет уменьшения внутренней энергии.

КПД тепловой машины.

Тепловой машиной называется периодически действующий двигатель, совершающий работу за счет получаемого извне количества теплоты.

Тепловая машина должна состоять из трех частей: 1) рабочего тела – газа (или пара), при расширении которого совершается работа; 2) нагревателя – тела, у которого за счет теплообмена рабочее тело получает количество теплоты Q1; 3) холодильника (окружающей среды), отбирающего у газа количество теплоты Q2.

Нагреватель периодически повышает температуру газа до Т1, а холодильник понижает до Т2. Отношение полезной работы А, выполненной машиной, к количеству теплоты, полученной от нагревателя, называется коэффициентом полезного действия машины h:

Коэффициент полезного действия идеальной тепловой машины: Т1 – температура нагревателя, Т2 – температура холодильника. – для идеальной тепловой машины.

ТЕСТОВЫЕ ЗАДАНИЯ

  1. Какое число молекул содержит 1 моль кислорода?
  2. Получите из уравнения Менделеева-Клапейрона уравнение изобарического процесса.
  3. По графикам изопроцессов в координатных осях V-T постройте графики тех же процессов в координатных осях p-V.

     

  4. Определите температуру в состоянии В, если в состоянии А Т=200 К. 
  5. Два сосуда объемами V1 и V2 заполнены идеальным газом при давлении р1 и р2. Какое установится давление в сосудах, если их соединить между собой? Температура не изменяется.

  6. Докажите, что удельная теплоемкость газа при постоянном давлении больше, чем при постоянном объеме.
  7. Идеальному газа передается количество теплоты таким образом, что в любой момент времени переданное количество теплоты Q равно работе А, совершенной газом.

    Какой процесс осуществлен?

  8. Идеальный газ переходит из состояния М в состояние N тремя различными способами, представленными на диаграмме p-V. В каком случае работе будет минимальной?
  9. Идеальному газу передано количество теплоты 5 Дж и внешние силы совершили над ним работу 8 Дж.

    Как изменится внутренняя энергия газа?

  10.  Каково максимально возможное КПД тепловой машины, использующей нагреватель с температурой 427о С и холодильник с температурой 27о С.

Ответы и решения

  1. Моль любого вещества содержит одинаковое число молекул, равное числу Авогадро: 
  2. Запишем уравнение Менделеева-Клапейрона для двух состояний с p=const и m=const, т.к. процесс перехода из одного состояния в другое изобарический:            (1)                (2)             Разделим (1) на (2), получаем: – уравнение изобатического процесса.
  3. Для определения температуры применим уравнение Менделеева-Клапейрона. Из графика: для состояния А -, для состояния В -. , из первого уравнения -,              тогда -.
  4. Давление смеси . Запишем уравнение изотермического процесса:,  – давление газов после расширения.
  5. Для решения задачи запишем первое начало термодинамики. Для изобарического процесса:.                                                                         Для изохорического процесса:.                                                                            Т.к.                                                                               Ср – удельная теплоемкость при постоянном давлении,                                                                                                       СV – теплоемкость при постоянном объеме.                                                                                                                   Т.к. ,                                                  , т.е. 
  6.  – первое начало термодинамики. По условию Q=А, т.е.  дельта U=0, значит, процесс протекает при постоянной температуре (процесс изотермический).
  7. А1 – численно равна площади фигуры А1В  ,. Т.к. меньше остальных площадей, то работа А1 минимальна. 
  8. Q=5 Дж, А/ =8 Дж – работу совершают внешние силы. Первое начало термодинамики запишем так:.10.

Источник: https://www.sites.google.com/a/ssga.ru/ssga4school/fizika/tema-2

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.