Системы счисления древнего мира. Системы счисления с древних времён до наших дней

Содержание

Древние системы счисления

Системы счисления древнего мира. Системы счисления с древних времён до наших дней

Никто не знает как давно люди научились считать. Но, почти наверняка, нам известно как они это делали раньше. По крайней мере, с того момента, когда древние числа начали записывать.

Система  счисления, это просто метод, которым представляются числа, чаще всего для этого мы используем специальные знаки — цифры. Сейчас мы пользуемся (и то не всегда) десятичной системой, у нас 10 цифр, и основание тоже — десятка.

Количество символов и основание не обязательно должны быть равны. В клинописи, например, только один символ — клин.

Древние цифры

Самой старой системой счисления была единичная или унарная. В ней была только одна цифра — единица. Так можно было сосчитать все, что угодно, интуитивно понятно и логично. Один это — I два, это — II  три — III.

Все просто, один палец, один предмет, если пальцы закончатся, можно взять палочки или камешки. Для удобства цифру (одну цифру) можно группировать по три или по четыре — IIII IIII IIII.  Пока не нужно считать много, очень удобно.

Но древним людям не приходилось много считать, они были заняты выживанием.

Единичную систему счисления применяют и сегодня… Попав на необитаемый остров, вы будете отмечать счастливые деньки именно в такой манере, зарубками на стволе дерева, например.

Двенадцатеричная система счисления

Она же Шумерская. Самая древняя система записи чисел из извесных.

Шумерская цивилизация счистится древнешей, и шумерская математика, скорее всего, тоже самая древняя. Итак почему 12, а не 5 или 10 (по числу пальцев).

На самом деле дело в пальцах, и у древних жителей Междуречья пальцев было тоже по 5 на каждой руке. Но считали они не пальцы, а фаланги. Посмотрите на картинку.

Прикасаясь большим пальцем к фалангам можно посчитать до 12. Эта система более удобна для счета, чем современна десятичная. Например, удобнее делить на 3.

Записывались все числа при помощи всего двух цифр: единицы (вертикальный клин) и десятки (горизонтальный клин). Цифра клин одна — а чисел записать можно много.

Запись чисел клинописью

В десятичной системе 1/3 = 0,33333333 (3). А в двенадцатеричной деление на 3 — это целое число. Ведь «дюжина» делится на 1,2,3,4,6 и само на себя. А десять, только на 1,2,5 и на 10.

Нет ничего сложного в том, чтобы разделить одну пиццу на троих, но как это сделать в десятичной системе? Разрезать на 10 равных частей и взять по сколько….Целые куски не получатся.

А вот если основа «дюжина», то деление на три даст 0,4. Двенадцать кусочков по 4 каждому.

Система настолько удобная, что мы пользуемся ею до сих пор…

От 12, сразу прыгаем к 60. Вавилонское царство возникло на месте шумерского. Поэтому, 12-ти и 60-ти, это фактически одна и та же система. Откуда взялось 60? Опять таки из пальцев. На одной руке 12 фаланг, а на другой — 5 пальцев. Досчитав до 12 на одно руке загибаем палец на другой и считаем снова до 12. Два загнутых пальца — две дюжины.

12х5=60.

И что же так считают? Время. На циферблате 12 часов по 60 минут в каждом.

Шумерские ученые первыми занялись астрономией, расчетом времени и календарем. Все остальные народы позаимствовали у них эти знания. И до сегодняшнего дня ничего не изменилось. Да и в окружности 360 градусов, а не 100, просто потому, что 360=12*30.

В Английской системе мер то же самое, в одном футе — 12 дюймов, в одном фунте — 12 унций. Во всем виноваты шумеры и удобство деления. Делить что-то на 2,3 и 4 приходится гораздо чаще, чем на 2 и на 5. Англичане точно знают, сколько это «треть фунта»,  а сколько будет «треть килограмма»?

Двадцатиричная система счисления

Ей пользовались индейцы майа. Но для записи использовались только три символа. Это «ноль», «единица» и «пять». Ноль изображался в виде ракушки, единица — точка, а пять — это линия. Чтобы записать число 18 делали так:

Выше написано буквально «три пятерки и три двойки», 5+5+5+3=18. В отличие от шумерской системы с двумя знаками для чисел, а индейцев Майа был самый настоящий ноль.

Десятичная система

Более молодая, чем вышеперечисленные. Использовалась в Египте, Древней Греции, Риме и, конечно, в Индии. Первыми, кто ее начал использовать были египтяне. Единица это — I двойка — II тройка — III…. Но для десятки был свой символ в виде дуги. Также и для сотни, тысячи, десяти тысяч.

Самым большой цифрой был миллион. Он изображался в виде человека с поднятыми вверх руками. Чтобы записать 12 делали так.

Впрочем, если написать «палочки» с другой стороны от дуги, число не изменится.

Древние греки тоже использовали десятичную систему, но вместо цифр — буквы. В самой древней, аттической системе египетский ряду цифр 1-10-100-1000 добавилась пятерка, которая записывалась буквой Π (пента, по-гречески «пять»). Интересно, что для денницы использовалась буква Ι.

Римская система счисления нам тоже хорошо известна. Она десятичная, так как пришла из Египта через Грецию. Единица римлян, такая же как и у египтян — I.  Есть пятерка от греков — V.

Многие историки считают, что такое изображение это упрощенный рисунок человеческой руки (пальцы не растопырены), а Х, это две скрещенные ладошки. У римлян, в отличие от египтян, позиция имеет значение.

Так ХI — это одиннадцать, а — девять.

После рассмотрения всех старых систем, становится понятно, как развивалась древняя арифметика. Когда в унитарной системе стало не хватать символов, вводились новые.

Достаточно неудобно считать «палочки» IIII IIII IIII, когда их много, добавляли символы для 5 или 10. Индейцы Майа вместо палочек использовали камешки рисовали точки для единиц, а «черточка» это пять камешков.

Все опять упирается в количество пальцев.

Источник: https://interesnye-istorii.in.ua/ancient-number-systems/

Что такое десятичная система счисления

Системы счисления древнего мира. Системы счисления с древних времён до наших дней

Любой человек ежедневно имеет дело с числами, и не будет преувеличением сказать, что числа сопровождают нас всю жизнь.

Числа складываются, вычитаются, умножаются и делятся – все это простые арифметические действия, доступные каждому и изучаемые в начальной школе.

Есть более сложные действия с числами, этим занимается наука математика, которую иначе можно назвать наукой освоения и использования чисел в десятичной системе счисления.

Десятичная система счисления является наиболее употребительной в обычной жизни в течении долгого времени до наших дней.

История возникновения систем счисления

Исторически, в мире существовало множество систем счисления. Они начали формироваться с самых древних времен, когда появились первые примитивные способы фиксировать количество чего-либо.

Это были зарубки на дереве, либо узлы на веревке. В данных системах счисления использовался простейший метод фиксации количества чего-то путем добавления новых зарубок на деревьях либо узлов на веревках.

По мере развития человечества, в Древней Греции появилась так называемая аттическая нумерация. Ее принцип построения предвосхищает хоть и малоупотребительную в наши дни, но тем не менее всем известную римскую систему счисления.

Только обозначения числовых символов в ней были несколько другие.В третьем веке до нашей эры ей на смену пришла ионийская система счисления.

Ее основные принципы были схожи с современной десятичной системой, и в ее основе лежит именно десятичное деление.

Только цифры там обозначались буквами греческого алфавита, и не развился в полной мере еще принцип составления более высоких чисел путем комбинирования предыдущих.

Справедливости ради надо сказать, алфавитная нумерация имелась у многих других народов Древнего мира, и кто первый ее выработал – неизвестно.

Потом надолго воцарилась римская система счисления, и несмотря на свое ограниченное применение, она известна многим и в наши дни.

https://www.youtube.com/watch?v=6UyLECXMswU

Десятичная же система, которой в основном мы и пользуемся вплоть до настоящего момента, возникла в Индии, и произошло это не позднее VI века нашей эры.

Получив там развитие до какого-то оформленного состояния, через страны арабского Востока она попала в Европу, таким образом, цифры этой системы получили название «арабские».

В современном мире помимо десятичной и кое-где римской систем счисления также используются:

  • Двоичная – в кибернетике, электронике, программировании.
  • Шестидесятеричная – для обозначения часов, минут, времени, в области измерения углов.

Мы же подробнее поговорим о десятичной системе.

Десятичная система счисления

Десятичная система является так называемой позиционной системой. Позиционные системы счисления – это системы, в которых позиция цифры напрямую определяет значение числа.

То есть, 05 – это пять, а вот 50 – это пятьдесят. Есть мнение, что возникновение десятичной системы произошло благодаря количеству пальцев на руках у человека.

Похоже на правду.  Все позиционные системы, из-за фиксированных позиций их цифр, предоставляют удобство и простоту в проведении арифметических расчетов.

В десятичной системе числа представляются с помощью арабских цифр. Используется 10 цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Из этих цифр состоят все без исключения числа десятичной системы, потому данные числа называются основанием.

Помимо основания, структуру десятичной системы формируют так называемые разряды. Десять цифр основания являются самым младшим разрядом – «единицы», они ведут к более высокому разряду – «десятки».

Система потому и называется десятичной, что для формирования более высокого разряда необходимо пройти 10 ступеней разряда предыдущего.

Все разряды в десятичной системе объединены в группы по три:

  • Единицы, десятки, сотни.
  • Тысячи, десятки тысяч, сотни тысяч.
  • Миллионы, десятки миллионов, сотни миллионов.
  • Миллиарды, десятки миллиардов, сотни миллиардов.

И так далее, до плюс бесконечности.

Помимо этого, в десятичной системе существуют и отрицательные числа. Это числа со знаком «минус», они как бы ведут от нуля в другую сторону, в сторону минус бесконечности.

Числа также делятся на целые и дробные. Значение дробных чисел уточняется знаками после запятой.

Этих знаков может быть сколько угодно много – до бесконечности. Они также бывают и положительными (со знаком «плюс») и отрицательными (со знаком «минус»).

В десятичной системе счисления с числами доступны четыре основные арифметические операции: сложение, вычитание, умножение и деление.

Эти действия можно проводить с любыми числами, как с дробными, так и с целыми, как с положительными, так и с отрицательными.

Единственное исключение – на число «ноль» делить нельзя, ввиду логической бессмысленности данного действия (и действительно, как можно разделить что-нибудь 0 раз).

Более сложные действия с числами (возведение в степень, корни, квадраты и прочее), в конечном счете являются производными от этих четырех простых действий.

Удобство использования, простые и понятные правила, опора на природу человека как таковую (у нас именно 10 пальцев на руках, как правило), а также энциклопедическая развитость десятичной системы счисления – именно эти качества и дали этой системе вечную жизнь.

Источник: https://mikrozaym-na-kartu.ru/chto-takoe-desyatichnaya-sistema-schisleniya/

Вавилонская система исчисления

Системы счисления древнего мира. Системы счисления с древних времён до наших дней

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 3

Системы счисления. 4

История появления вавилонской системы счисления. 6

Особенности вавилонской системы счисления. 7

Список литературы.. 10

Приложение. 11

ВВЕДЕНИЕ

В процессе изучения систем счисления особый интерес представляет так называемая “вавилонская”, или шестидесятеричная система счисления, весьма сложная система, существовавшая в Древнем Вавилоне.

Мнения историков по поводу того, как именно возникла эта система счисления, расходятся.

Существуют две гипотезы.

Первая исходит из того, что произошло слияние двух племен, одно из которых пользовалось шестеричной, другое – десятичной. Шестидесятеричная система счисления в данном случае могла возникнуть в результате своеобразного политического компромисса.

Суть второй гипотезы в том, что древние вавилоняне считали продолжительность года равной 360 суткам, что естественно связано с числом 60. Отголоски использования этой системы счисления дошли до наших дней. Например: 1 час = 60 минутам, 1° = 60‘.

В целом шестидесятеричная система счисления громоздка.

Системы счисления

Интуитивное представление о числе, по-видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно.

Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей.

То, что первобытные люди сначала знали только “один”, “два” и “много”, подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми.

Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными. Например, слово “три” использовалось только в сочетаниях “три дерева” или “три человека”; представление о том, что эти множества имеют между собой нечто общее – понятие троичности – требует высокой степени абстракции.

О том, что счет возник раньше появления этого уровня абстракции, свидетельствует тот факт, что слова “один” и “первый”, равно как “два” и “второй”, во многих языках не имеют между собой ничего общего, в то время как лежащие за пределами первобытного счета “один”, “два”, “много”, слова “три” и “третий”, “четыре” и “четвертый” ясно указывают на взаимосвязь между количественными и порядковыми числительными.

Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности.

В глубокой древности примитивные числовые записи делались в виде зарубок на палке, узлов на веревке, выложенных в ряд камешков, причем подразумевалось, что между пересчитываемыми элементами множества и символами числовой записи существует взаимно однозначное соответствие. Но для чтения таких числовых записей названия чисел непосредственно не использовались.

Ныне мы с первого взгляда распознаем совокупности из двух, трех и четырех элементов; несколько труднее распознаются на взгляд наборы, состоящие из пяти, шести или семи элементов. А за этой границей установить на глаз их число практически уже невозможно, и нужен анализ либо в форме счета, либо в определенном структурировании элементов.

Счет на бирках, по-видимому, был первым приемом, который использовался в подобных случаях: зарубки на бирках располагались определенными группами подобно тому, как при подсчете избирательных бюллетеней их часто группируют пачками по пять или десять штук.

Очень широко был распространен счет на пальцах, и вполне возможно, что названия некоторых чисел берут свое начало именно от этого способа подсчета.

Важная особенность счета заключается в связи названий чисел с определенной схемой счета. Например, слово “двадцать три” – не просто термин, означающий вполне определенную (по числу элементов) группу объектов; это термин составной, означающий “два раза по десять и три”.

Здесь отчетливо видна роль числа десять как коллективной единицы или основания; и действительно, многие считают десятками, потому что, как отметил еще Аристотель, у нас по десять пальцев на руках и на ногах. По той же причине использовались основания пять или двадцать.

На очень ранних стадиях развития истории человечества за основания системы счисления принимались числа 2, 3 или 4; иногда для некоторых измерения или вычислений использовались основания 12 и 60.

Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа.

Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ. Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.

История появления вавилонской системы счисления

Вавилонская система счисления появилась в Древнем Вавилоне за 2000 лет до н.э. Она очень сильно повлияла на письменность в целом будущего мира.

   Вавилонская система (шестидесятеричная)  одна из первых известных систем счисления мира, основанная на позиционном принципе. Система счисления Вавилона сыграла огромную роль в развитии математики, астрономии и других точных наук будущего мира, ее следы находят по наши дни.

В наше время мы делим один час на 60 минут, а минуту делим на 60 секунд. Также окружность мы делим на 360 частей. Оказывается теми простыми делениями мы следуем примеру Вавилона!

В своем развитии человечество старалось  совершенствовать запись чисел, которыми им приходилось пользоваться все чаще и чаще, у разных народов в разные времена употреблялись самые различные системы счета.  В этой системе счисления числа составлялись из  двух видов знаков.

Прямой клин использовался для обозначения единиц, а лежачий клин – для обозначения десятков. Клинья в этой системе счисления использовались как цифры. Число 60 снова обозначалось тем же прямым клином, что и 1. Тем же знаком обозначались числа 3600 и 602, 216000 и 603, и все другие степени 60.

Поэтому вавилонская система счисления называется шестидесятеричной.

Для того чтобы определить значения знака, надо было изображение этого числа разбить на разряды справа налево.  Чередование групп имеющие одинаковые знаки соответствовало чередованию разрядов.

Значение числа определялось по составляющим значениям его цифр, но с тем учетом, что цифры в каждом последующем разряде значили в 60 раз больше тех цифр в предыдущем разряде.

В конце числа этот символ обычно не ставился, то есть этот символ не был нулем в нашем понимании.

Таблицу умножения в Вавилоне запомнить было практически невозможно. Вавилоняне пользовались готовыми таблицами умножения при вычислениях.  В целом вавилонская система была очень громоздка и неудобна.

Эта системы дала очень сильный толчок к развитию будущих систем счисления…

Сейчас можно сказать с уверенностью,  что если бы не было вавилонской системы счисления, то возможно мы бы сейчас либо пользовались другими системами, либо не могли просто считать.

Особенности вавилонской системы счисления

В Древнем Вавилоне, ок. 1650 до н.э., система счисления была псевдопозиционной или лишь относительно позиционной, поскольку не существовало эквивалента современной десятичной запятой, равно как и символа для обозначения отсутствующей позиции. Обозначал ли символ

число 1*(60)2 + 1 или 1*(60)2 + 1*(60), приходилось догадываться из контекста. Однако в период правления селевкидов, ок. 300 до н.э.

, эта неоднозначность была устранена введением специального символа в виде двух небольших клиньев, помещаемого на пустующее место, т.е. обозначающего пустую позицию в записи числа.

Таким образом, из системы счисления была устранена отмеченная выше неоднозначность. Например, символ

означал число 3601, т.е. 1*(60)2 + 0*(60) + 1. В то же время не было найдено ни одной таблички с записью, в которой символ нуля находился бы в конце числа.

Именно поэтому вавилонскую систему мы считаем лишь относительно позиционной, ибо самый правый знак мог означать либо единицы, либо кратные какой-нибудь степени числа 60.

Тем не менее изобретение вавилонянами позиционной системы счисления с нулем представляло собой огромное достижение, по своему революционному значению для математики сопоставимое разве лишь с более поздней гипотезой Коперника в астрономии.

Символы для обозначения чисел на вавилонских глиняных табличках не столь точны, как символы для обозначения чисел на древнеегипетских папирусах, несмотря на то, что вавилоняне использовали позиционный принцип.

В исключительных случаях вавилоняне применяли сокращенные формы записи, иногда – с новыми символами для обозначения чисел 100 и 1000, или использовали принципы умножения или вычитания. Однако превосходство разработанной в Месопотамии системы счисления отчетливо видно в обозначении дробей. Здесь не требовалось вводить новые символы.

Как и в нашей собственной десятичной позиционной системе, в древневавилонской системе подразумевалось, что на первом месте справа от единиц стоят величины, кратные 1/60, на втором месте – величины кратные 1/602 и т.д.

Привычное нам деление часа и углового или дугового градуса на 60 минут, а одной минуты – на 60 секунд берет начало от вавилонской системы счисления.”

 Но для записи чисел больше 59 древние вавилоняне впервые использовали новый принцип – одно из самых выдающихся достижений в развитии систем обозначений чисел – принцип позиционности, т.е. зависимости значения символа от его местоположения в записи числа.

Вавилоняне заметили, что в качестве коллективных символов более высокого порядка можно применять уже ранее использованные символы, если они будут занимать в записи числа новое положение левее предыдущих символов.

Так, один клиновидный знак мог использоваться для обозначения и 1, и 60, и 602, и 603, в зависимости от занимаемого им в записи числа положения, подобно тому, как единица в наших обозначениях используется в записях и 10, и 102, и 103, и в числе 1111.

При обозначении чисел больше 60 знаки, выступающие в новом качестве, отличались от старых тем, что символы разбивались на “места”, или “позиции”, и единицы более высокого порядка располагались слева. При таком способе записи для обозначения сколь угодно больших чисел уже не нужно было других символов, кроме уже известных. Например, число 6789 можно было записать так:

, т.е. 1*(60)2 + 53*(60) + 9.

Список литературы

1.     Берман Н.Г. Счет и число. М., 2001.

2.     Ван дер Варден Б.Л. Пробуждающаяся наука. М., 1959 Данн-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. СПб.:Питер, 2000.

3.     Всевозможные нумерации и системы счисления (http://www.megalink.ru/~agb/n/numerat.htm)

4.     Глейзер  Г. И. История математики в школе. Спб..: Питер,1999.

5.     Юшкевич А.П. История математики, Том 1, М.,1999.

Приложение

Обозначения чисел в Вавилонской системе счисления

Источник: https://xn--80aaowabp5a6h2a.xn--p1ai/besplatnye-gotovye-studencheskie-raboty/2016-08-23/vavilonskaya-sistema-ischisleniya

История чисел и система счисления, позиционные системы (кратко)

Системы счисления древнего мира. Системы счисления с древних времён до наших дней

История чисел и система счисления тесно взаимосвязаны, потому что система счисления и представляет собой способ записи такого абстрактного понятия, как число. Данная тема не относится сугубо к области математики, ведь всё это является важной частью культуры народа в целом.

Потому, когда разбирается история чисел и систем счисления, кратко затрагиваются и многие другие аспекты истории создавших их цивилизаций. Системы в целом делятся на позиционные, непозиционные и смешанные. Из их чередования состоят вся история чисел и систем счисления. Позиционные системы – это такие, в которых величина, обозначаемая цифрой в записи числа, зависит от ее позиции.

В непозиционных системах, соответственно, такой зависимости нет. Человечеством созданы и смешанные системы.

Изучение систем счисления в школе

Сегодня урок «История чисел и систем счисления» проводится в 9 классе в рамках курса по информатике. Главное практическое его значение – научить переводить числа из одной системы счисления в другую (прежде всего из десятиричной в двоичную).

Однако история чисел и систем счисления является органической частью истории в целом и вполне могла бы дополнить также и этот предмет школьной программы. Также это могло бы улучшить пропагандируемый сегодня междисциплинарный подход.

В рамках общего курса истории в принципе могла бы изучаться не только история экономического развития, социально-политических движений, правлений и войн, но и в небольшой степени история чисел и систем счисления.

9 класс в курсе информатики в таком случае можно было бы в части перевода чисел из одной системы в другую снабдить значительно большим число примеров из ранее пройденного материала. А примеры эти не лишены увлекательности, что и будет показано ниже.

Сложно сказать, когда, а главное, как человек научился считать (так же, как невозможно доподлинно выяснить, когда, а главное, как возник язык). Известно только, что все древние цивилизации уже имели свои системы счёта, значит, история чисел и система счисления зародились в доцивилизационное время.

Камни и кости не способны рассказать нам, что происходило в человеческом сознании, а письменных источников тогда ещё не создавали. Возможно, счёт понадобился человеку при разделе добычи или много позже, уже в ходе неолитической революции, то есть при переходе к земледелию, для раздела участков поля. Любые теории на этот счёт будут в равной степени беспочвенными.

Но некоторые предположения всё же можно сделать, изучая историю различных языков.

Следы древнейшей системы счисления

Самая логичная начальная система счёта – противопоставление понятий «один» – «много». Логична она для нас потому, что в современном русском языке существует только единственное и множественное число.

Но во многих древних языках было также и двойственное число для обозначения двух предметов. Существовало оно и в первых индоевропейских языках, включая древнерусский. Таким образом, история чисел и система счисления начались с разделения понятий «один», «два», «много».

Однако уже в самых древних известных нам цивилизациях были разработаны более детальные системы счисления.

Месопотамская запись чисел

Мы привыкли, что система счисления десятирична. Это и понятно: на руках 10 пальцев. Но тем не менее история возникновения чисел и систем счисления прошла через более сложные фазы. Месопотамская система счисления – шестидесятиричная. Потому до сих пор в часе 60 минут, а в минуте – 60 секунд.

Потому год делится на число месяцев, кратное 60, а день делится на такое же число часов. Изначально это были солнечные часы, то есть каждый из них составлял 1/12 светового дня (на территории современного Ирака его длительность не сильно варьировалась).

Только много позже длительность часа стали определять не по солнцу и добавили также 12 ночных часов.

Интересно то, что записывались знаки этой шестидесятиричной системы, будто она десятиричная – существовало только два знака (для обозначения единицы и десятка, не шести и не шестидесяти, а именно десятка), цифры получали, комбинируя эти знаки. Страшно себе даже вообразить, как сложно было записать сколько-нибудь большое число таким способом.

Древнеегипетская система счисления

И история чисел в десятиричной системе счисления, и использование многочисленных значков для обозначения чисел началось с древних египтян. Они комбинировали иероглифы, которые обозначали один, сто, тысячу, десять тысяч, сто тысяч, миллион и десять миллионов, обозначая таким образом нужное число.

Такая система была гораздо удобнее, чем месопотамская, использовавшая только два знака. Но при этом она имела явное ограничение: сложно было записать число, значительно большее, чем десять миллионов.

Правда, древнеегипетская цивилизация, как и большинство цивилизаций Древнего мира, с такими числами не сталкивалась.

Эллинские буквы в математических записях

История европейской философии, науки, политической мысли и многого другого во многом начинается в Древней Элладе («Эллада» – это самоназвание, оно предпочтительнее, чем придуманное римлянами «Греция»). Развиты в этой цивилизации были и математические знания.

Числа эллины записывали буквами. Отдельные буквы обозначали каждое число от 1 до 9, каждый десяток от 10 до 90 и каждую сотню от 100 до 900. Только тысячу обозначали той же буквой, что и единицу, но с другим знаком рядом с буквой.

Система позволяла даже большие цифры обозначать относительно короткими надписями.

Славянская система счисления как наследница эллинской

История чисел и систем счисления была бы не полной без нескольких слов о наших предках. Кириллица, как известно, основана на эллинском алфавите, потому и славянская система записи цифр также была основана на эллинской. Здесь тоже отдельными буквами обозначалось каждое число от 1 до 9, каждый десяток от 10 до 90 и каждая сотня от 100 до 900.

Только использовались не эллинские буквы, а кириллица, или глаголица.

Существовала также и интересная особенность: несмотря на то что и эллинские тексты в то время, и славянские с самого начала их истории записывались слева направо, славянские цифры писались как бы справа налево, то есть буквы, обозначавшие десятки ставили правее букв, обозначавших единицы, буквы, обозначавшие сотни правее букв, обозначавших десятки и т. д.

Аттическое упрощение

Эллинские учёные достигли огромных высот. Римское завоевание не прервало их изысканий. Например, судя по косвенным свидетельствам, Аристарх Самосский за 18 веков до Коперника разработал Гелиоцентрическую систему мира. Во всех этих сложных расчётах эллинским учёным помогала их система записи чисел.

Но для простых людей, например, торговцев, система зачастую оказывалась слишком сложной: чтобы её использовать, требовалось запомнить числовые значения 27 букв (вместо числовых значений 10 символов, которые учат современные школьники).

Потому появилась упрощённая система, получившая название аттической (Аттика – область Эллады, одно время лидировавшая в регионе в целом и особенно в морской торговле региона, так как столицей Аттики были знаменитые Афины). В этой системе отдельными буквами стали обозначаться только числа один, пять, десять, сто, тысяча и десять тысяч.

Получается всего шесть знаков – их гораздо легче запоминать, а слишком сложных вычислений торговцы всё равно не производили.

Римские цифры

И система счисления, и история чисел древних римлян, и в принципе история их науки является продолжением эллинской истории.

За основу была взята аттическая система, просто эллинские буквы заменили латинскими и добавили отдельное обозначение пятидесяти и пятисот.

При этом сложные расчёты в своих трактатах учёные продолжали производить эллинской системой записи в 27 букв (да и сами трактаты они обычно писали по-эллински).

Римскую систему записи чисел нельзя назвать особо совершенной. В частности, она гораздо более примитивна, чем древнерусская.

Но исторически сложилось так, что она до сих пор сохраняется наравне с арабскими (так называемыми) цифрами. И забывать эту альтернативную систему, переставать её использовать не стоит.

В частности, сегодня часто арабскими цифрами обозначаются количественные числительные, а римскими – порядковые.

Великое древнеиндийское изобретение

Цифры, которые сегодня используем мы, появились изначально в Индии. Точно не известно, когда история чисел и система счисления сделали этот знаменательный поворот, но, скорее всего, не позднее V века от Рождества Христова.

Часто подчёркивается, что именно индийцы разработали понятие нуля.

Такое понятие было известно математикам и других цивилизаций, но действительно лишь система индийцев позволила полноценно включить его в математические записи, а значит, и в вычисления.

Предположительно в IX веке индийские цифры заимствовали арабы. В то время как европейцы пренебрежительно относились к античному наследию, а в некоторые регионах одно время даже намеренно уничтожали его как языческое, арабы бережно хранили достижения древних греков и римлян.

С самого начала их завоеваний ходовым товаром стали переводы античных авторов на арабский. В основном через трактаты арабских учёных средневековые европейцы снова обрели наследие древних мыслителей. Вместе с этими трактатами пришли и индийские цифры, которые в Европе стали называть арабскими.

Они не сразу были приняты, потому что для большинства людей оказались менее понятными, чем римские. Но постепенно удобство математических расчётов с помощью этих знаков победило невежественность.

Лидерство европейских промышленно развитых стран привело к тому, что так называемые арабские цифры распространились по всему миру и сегодня применяются практически повсеместно.

Двоичная система счисления современных компьютеров

С появлением компьютеров постепенно совершили значительный поворот многие области знаний. Не стала исключением история чисел и систем счисления.

Фото первого компьютера мало напоминает современное устройство, на мониторе которого вы читаете эту статью, но работа их обоих основана на двоичной системе счисления, коде, состоящем, только из нулей и единиц.

Для обыденного сознания всё же остаётся удивительным, что с помощью комбинации из всего двух символов (фактически сигнала или его отсутствия) можно производить самые сложные вычисления и автоматически (при наличии соответствующей программы) переводить числа в десятиричной системе исчисления в числа в двоичной, шестнадцатиричной, шестидесятишестиричной и любой другой системе. И с помощью такого двоичного кода на мониторе изображается данная статья, где отражена история чисел и система счисления у разных цивилизаций в истории.

Источник: https://FB.ru/article/228271/istoriya-chisel-i-sistema-schisleniya-pozitsionnyie-sistemyi-kratko

Система счисления

Системы счисления древнего мира. Системы счисления с древних времён до наших дней

Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Такие символы называют цифрами.

Системы счисления

Для представления чисел используются непозиционные и позиционные системы счисления.

Непозиционные системы счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек.

Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путём повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня.

Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1–го класса счету.

Рассмотрим различные системы счисления.

Единичная система – не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.

Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки – иероглифы.

Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной. В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.

Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы).

Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.

Римская система счисления. Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме.

В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII=10+10+5+1+1+1 (два десятка, пяток, три единицы).

Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него. Например, IX – обозначает 9, XI – обозначает 11.

Десятичное число 99 имеет следующее представление:

XCIХ = –10+100–1+10.

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.

Алфавитные системы счисления. Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие.

В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита. В алфавитной системе счисления Древней Греции числа 1, 2, …, 9 обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел 10, 20, …

, 90 применялись следующие 9 букв а для обозначения чисел 100, 200, …, 900 – последние 9 букв.

У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.

Непозиционные системы счисления имеют ряд существенных недостатков:

  • Существует постоянная потребность введения новых знаков для записи больших чисел.
  • Невозможно представлять дробные и отрицательные числа.
  • Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

В позиционных системах счисления – количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа. Ныне мы привыкли пользоваться десятичной позиционной системой — числа записываются с помощью 10 цифр. Самая правая цифра обозначает единицы, левее — десятки, ещё левее — сотни и т.д.

Например: 1) шестидесятеричная (Древний Вавилон)– первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1мин = 60с, 1ч = 60мин); 2) двенадцатеричная система счисления (широкое распространение получила в XIX в.

число 12 – “дюжина”: в сутках две дюжины часов). Счёт не по пальцам, а по суставам пальцев.

На каждом пальце руки, кроме большого, по 3 сустава – всего 12; 3) в настоящее время наиболее распространёнными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная (широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами).

В любой позиционной системе число может быть представлено в виде многочлена.

Покажем, как представляют в виде многочлена десятичное число:

Типы систем счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа.

Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет).

Основных цифр здесь тоже 10, и система счисления – десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления.

Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления.

“А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

Источник: http://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.