Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

Содержание

Как расчитать дисперсию в Excel с помощью функции ДИСП.В

Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

Дисперсия — это мера рассеяния, описывающая сравнительное отклонение между значениями данных и средней величиной. Является наиболее используемой мерой рассеяния в статистике, вычисляемая путем суммирования, возведенного в квадрат, отклонения каждого значения данных от средней величины. Формула для вычисления дисперсии представлена ниже:

где:

s2 – дисперсия выборки;

xср — среднее значение выборки;

n размер выборки (количество значений данных),

(xi – xср) — отклонение от средней величины для каждого значения набора данных.

Для лучшего понимания формулы, разберем пример. Я не очень люблю готовку, поэтому занятием этим занимаюсь крайне редко. Тем не менее, чтобы не умереть с голоду, время от времени мне приходится подходить к плите  для реализации замысла по насыщению моего организма белками, жирами и углеводами. Набор данных, редставленный ниже, показывает, сколько раз Ренат готовит пищу каждый месяц:

Первым шагом при вычислении дисперсии является определение среднего значения выборки, которое в нашем примере равняется 7,8 раза в месяц. Остальные вычисления можно облегчить с помощью следующей таблицы.

Финальная фаза вычисления дисперсии выглядит так:

Для тех, кто любит производить все вычисления за один раз, уравнение будет выглядеть следующим образом:

Использование метода «сырого счета» (пример с готовкой)

Существует более эффективный способ вычисления дисперсии, известный как метод «сырого счета». Хотя с первого взгляда уравнение может показаться весьма громоздким, на самом деле оно не такое уж страшное. Можете в этом удостовериться, а потом и решите, какой метод вам больше нравится.

где:

— сумма каждого значения данных после возведения в квадрат,

 — квадрат суммы всех значений данных.

Не теряйте рассудок прямо сейчас. Позвольте представить все это в виде таблицы, и тогда вы увидите, что вычислений здесь меньше, чем в предыдущем примере.

Как видите, результат получился тот же, что и при использовании предыдущего метода. Достоинства данного метода становятся очевидными по мере роста размера выборки (n).

Расчет дисперсии в Excel

Как вы уже, наверное, догадались, в Excel присутствует формула, позволяющая рассчитать дисперсию. Причем, начиная с Excel 2010 можно найти 4 разновидности формулы дисперсии:

1)      ДИСП.В – Возвращает дисперсию по выборке. Логические значения и текст игнорируются.

2)      ДИСП.Г — Возвращает дисперсию по генеральной совокупности. Логические значения и текст игнорируются.

3)      ДИСПА — Возвращает дисперсию по выборке с учетом логических и текстовых значений.

4)      ДИСПРА — Возвращает дисперсию по генеральной совокупности с учетом логических и текстовых значений.

Для начала разберемся в разнице между выборкой и генеральной совокупностью. Назначение описательной статистики состоит в том, чтобы суммировать или отображать данные так, чтобы оперативно получать общую картину, так сказать, обзор.

Статистический вывод позволяет делать умозаключения о какой-либо совокупности на основе выборки данных из этой совокупности. Совокупность представляет собой все возможные исходы или измерения, представляющие для нас интерес.

Выборка — это подмножество совокупности.

Например, нас интересует совокупность группы студентов одного из Российских ВУЗов и нам необходимо определить средний бал группы.

Мы можем посчитать среднюю успеваемость студентов, и тогда полученная цифра будет параметром, поскольку в наших расчетах будет задействована целая совокупность.

Однако, если мы хотим рассчитать средний бал всех студентов нашей страны, тогда эта группа будет нашей выборкой.

Разница в формуле расчета дисперсии между выборкой и совокупностью заключается в знаменателе. Где для выборки он будет равняться (n-1), а для генеральной совокупности только n.

Теперь разберемся с функциями расчета дисперсии с окончаниями А, в описании которых сказано, что при расчете учитываются текстовые и логические значения.

В данном случае при расчете дисперсии определенного массива данных, где встречаются не числовые значения, Excel будет интерпретировать текстовые и ложные логические значения как равными 0, а истинные логические значения как равными 1.

Итак, если у вас есть массив данных, рассчитать его дисперсию ни составит никакого труда, воспользовавшись одной из перечисленных выше функций Excel.

Вам также могут быть интересны следующие статьи

Источник: https://exceltip.ru/%D0%BA%D0%B0%D0%BA-%D1%80%D0%B0%D1%81%D1%87%D0%B8%D1%82%D0%B0%D1%82%D1%8C-%D0%B4%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8E-%D0%B2-excel-%D1%81-%D0%BF%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%D1%8E-%D1%84/

Как найти среднее арифметическое число в Excel

Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

Для того чтобы найти среднее значение в Excel (при том неважно числовое, текстовое, процентное или другое значение) существует много функций. И каждая из них обладает своими особенностями и преимуществами. Ведь в данной задаче могут быть поставлены определенные условия.

Например, средние значения ряда чисел в Excel считают с помощью статистических функций. Можно также вручную ввести собственную формулу. Рассмотрим различные варианты.

Чтобы найти среднее арифметическое, необходимо сложить все числа в наборе и разделить сумму на количество. Например, оценки школьника по информатике: 3, 4, 3, 5, 5. Что выходит за четверть: 4. Мы нашли среднее арифметическое по формуле: =(3+4+3+5+5)/5.

Как это быстро сделать с помощью функций Excel? Возьмем для примера ряд случайных чисел в строке:

  1. Ставим курсор в ячейку А2 (под набором чисел). В главном меню – инструмент «Редактирование» – кнопка «Сумма». Выбираем опцию «Среднее». После нажатия в активной ячейке появляется формула. Выделяем диапазон: A1:H1 и нажимаем ВВОД.
  2. В основе второго метода тот же принцип нахождения среднего арифметического. Но функцию СРЗНАЧ мы вызовем по-другому. С помощью мастера функций (кнопка fx или комбинация клавиш SHIFT+F3).
  3. Третий способ вызова функции СРЗНАЧ из панели: «Формула»-«Формула»-«Другие функции»-«Статические»-«СРЗНАЧ».

Или: сделаем активной ячейку и просто вручную впишем формулу: =СРЗНАЧ(A1:A8).

Теперь посмотрим, что еще умеет функция СРЗНАЧ.

Найдем среднее арифметическое двух первых и трех последних чисел. Формула: =СРЗНАЧ(A1:B1;F1:H1). Результат:



Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Функция: =СРЗНАЧЕСЛИ(A1:A8;”>=10″)

Результат использования функции СРЗНАЧЕСЛИ по условию “>=10”:

Третий аргумент – «Диапазон усреднения» – опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку.

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово “столы”). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно.

Как посчитать средневзвешенную цену в Excel?

Как посчитать средний процент в Excel? Для этой цели подойдут функции СУММПРОИЗВ и СУММ. Таблица для примера:

Как мы узнали средневзвешенную цену?

Формула: =СУММПРОИЗВ(C2:C12;B2:B12)/СУММ(C2:C12).

С помощью формулы СУММПРОИЗВ мы узнаем общую выручку после реализации всего количества товара. А функция СУММ – сумирует количесвто товара. Поделив общую выручку от реализации товара на общее количество единиц товара, мы нашли средневзвешенную цену. Этот показатель учитывает «вес» каждой цены. Ее долю в общей массе значений.

Среднее квадратическое отклонение: формула в Excel

Различают среднеквадратическое отклонение по генеральной совокупности и по выборке. В первом случае это корень из генеральной дисперсии. Во втором – из выборочной дисперсии.

Для расчета этого статистического показателя составляется формула дисперсии. Из нее извлекается корень. Но в Excel существует готовая функция для нахождения среднеквадратического отклонения.

Среднеквадратическое отклонение имеет привязку к масштабу исходных данных. Для образного представления о вариации анализируемого диапазона этого недостаточно. Чтобы получить относительный уровень разброса данных, рассчитывается коэффициент вариации:

среднеквадратическое отклонение / среднее арифметическое значение

Формула в Excel выглядит следующим образом:

СТАНДОТКЛОНП (диапазон значений) / СРЗНАЧ (диапазон значений).

Коэффициент вариации считается в процентах. Поэтому в ячейке устанавливаем процентный формат.

Источник: https://exceltable.com/funkcii-excel/kak-nayti-srednee-arifmeticheskoe-chislo

Формула среднеквадратического отклонения в excel

Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

Определение среднего квадратичного отклонения

Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций

  1. Выделяем на листе ячейку, куда будет выводиться готовый результат. Кликаем на кнопку «Вставить функцию», расположенную слева от строки функций.

В открывшемся списке ищем запись СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г. В списке имеется также функция СТАНДОТКЛОН, но она оставлена из предыдущих версий Excel в целях совместимости.

После того, как запись выбрана, жмем на кнопку «OK».

  • Результат расчета будет выведен в ту ячейку, которая была выделена в самом начале процедуры поиска среднего квадратичного отклонения.
  • Способ 2: вкладка «Формулы»

    Также рассчитать значение среднеквадратичного отклонения можно через вкладку «Формулы».

      Выделяем ячейку для вывода результата и переходим во вкладку «Формулы».

  • После этого запускается окно аргументов. Все дальнейшие действия нужно производить так же, как и в первом варианте.
  • Способ 3: ручной ввод формулы

    Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.

      Выделяем ячейку для вывода результата и прописываем в ней или в строке формул выражение по следующему шаблону:

    =СТАНДОТКЛОН.Г(число1(адрес_ячейки1); число2(адрес_ячейки2);…) или

    =СТАНДОТКЛОН.В(число1(адрес_ячейки1); число2(адрес_ячейки2);…).

    Всего можно записать при необходимости до 255 аргументов.

  • После того, как запись сделана, нажмите на кнопку Enter на клавиатуре.
  • Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа.

    Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике.

    Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

    В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

    Например, у нас есть временной ряд – продажи по неделям в шт.

    Для этого временного ряда i=1, n=10 , ,

    Рассмотрим формулу среднего значения:

    Для нашего временного ряда определим среднее значение

    Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

    = СРЗНАЧ(ссылка на диапазон) = 100/10=10

    2. Определим отклонение каждого значения ряда относительно среднего

    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    Источник: https://pcznatok.ru/kompjutery/formula-srednekvadraticheskogo-otklonenija-v-excel.html

    Расчет показателей вариации в Excel

    Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

    Оригинал http://statanaliz.info/index.php/excel/formuly/37-raschet-pokazatelej-variatsii-v-excel

    Добрый день, уважаемые любители статистического анализа данных, а сегодня еще и программы Excel.

    Проведение любого статанализа немыслимо без расчетов. И сегодня в рамках рубрики «Работаем в Excel» мы научимся рассчитывать показатели вариации. Теоретическая основа была рассмотрена ранее в ряде статей о вариации данных.

    Кстати, на этом указанная тема не закончилась, к выпуску планируются новые статьи – следите за рекламой! Однако сухая теория без инструментов реализации – вещь не сильно полезная.

    Поэтому по мере появления теоретических выкладок, я стараюсь не отставать с заметками о соответствующих расчетах в программе Excel.

    Сегодняшняя публикация будет посвящена расчету в Excel следующих показателей вариации:

    — максимальное и минимальное значение

    — среднее линейное отклонение

    — дисперсия (по генеральной совокупности и по выборке)

    — среднее квадратическое отклонение (по генеральной совокупности и по выборке)

    — коэффициент вариации

    Факт возможности расчета упомянутых показателей в Excel свидетельствует о практическом их использовании. И, несмотря на очевидность некоторых моментов, я постараюсь расписать все подробно.

    Максимальное и минимальное значение

    Начнем с формул максимума и минимума. Что такое максимальное и минимальное значение, уверен, знают почти все. Максимум – самое большое значение из анализируемого набора данных, минимум – самое маленькое (может быть и отрицательным числом).

    Это крайние значения в совокупности данных, обозначающие границы их вариации. Примеры реального использования каждый может придумать сам – их полно. Это и минимальные/максимальные цены на что-нибудь, и выбор наилучшего или наихудшего решения задачи, и всего, чего угодно.

    Минимум и максимум – весьма информативные показатели. Давайте теперь их рассчитаем в Excel.

    Как нетрудно догадаться, делается сие элементарно – как два клика об асфальт. В Мастере функций следует выбрать: МАКС – для расчета максимального значения, МИН – для расчета минимального значения. Для облегчения поиска перечень всех функций можно отфильтровать по категории «Статистические».

    Выбираем нужную формулу, в следующем окошке указываем диапазон данных (в котором ищется максимальное или минимальное значение) и жмем «ОК».

    Функции МАКС и МИН достаточно часто используются, поэтому разработчики Экселя предусмотрительно добавили соответствующие кнопки в ленту. Они находятся там же, где суммаи среднее значение – в разворачивающемся списке.

    В общем, для вызова функции максимума или минимума действий потребуется не больше, чем для расчета средней арифметической. Все архипросто.

    Среднее линейное отклонение

    Среднее линейное отклонение, напоминаю, представляет собой среднее из абсолютных (по модулю) отклонений от средней арифметической в анализируемой совокупности данных. Математическая формула имеет вид:

    где

    a – среднее линейное отклонение,

    x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

    n – количество значений в анализируемой совокупности данных.

    В Excel эта функция называется СРОТКЛ.

    После выбора функции СРОТКЛ указываем диапазон данных, по которому должен произойти расчет. Нажимаем «ОК». Наслаждаемся результатом.

    Дисперсия

    Дисперсия — это средний квадрат отклонений, мера характеризующая разброс данных вокруг среднего значения. Математическая формула дисперсии по генеральной совокупности имеет вид:

    где

    D – дисперсия,

    x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

    n – количество значений в анализируемой совокупности данных.

    Excel также предлагает готовую функцию для расчета генеральной дисперсии ДИСП.Г.

    При анализе выборочных данных, следует использовать выборочную дисперсию, так как генеральная оказывается смещенной в сторону занижения.

    Математическая формула выборочной дисперсии имеет вид:

    в Excel выборочная дисперсия рассчитывает через функцию ДИСП.В.

    Выбираем в Мастере функций нужную дисперсию (генеральную или выборочную), указываем диапазон, жмем кнопку «ОК». Полученное значение может оказаться очень большим из-за предварительного возведения отклонений в квадрат, поэтому дисперсия сама по себе мало о чем говорит. Ее обычно используют для дальнейших расчетов.

    Среднее квадратическое отклонение

    Среднеквадратическое отклонение по генеральной совокупности – это корень из генеральной дисперсии.

    Выборочное среднеквадратическое отклонение – это корень из выборочной дисперсии.

    Для расчета можно извлечь корень из формул дисперсии, указанных чуть выше, но в Excel есть и готовые функции:

    — Среднеквадратическое отклонение по генеральной совокупности СТАНДОТКЛОН.Г

    — Среднеквадратическое отклонение по выборке СТАНДОТКЛОН.В.

    С названием этого показателя может возникнуть путаница, т.к. часто можно встретить синоним «стандартное отклонение». Пугаться не нужно – смысл тот же.

    Далее, как обычно, указываем нужный диапазон и нажимаем на «ОК». Среднее квадратическое отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными. Об этом ниже.

    Коэффициент вариации

    Все показатели, рассмотренные выше, имеют привязку к масштабу исходных данных и не позволяют получить образное представление о вариации анализируемой совокупности.

    Для получения относительной меры разброса данных используют коэффициент вариации, который рассчитывается путем деления среднего квадартического отклонения на среднее арифметическое значение. Математическая формула такова:

    В Экселе нет готовой функции для расчета коэффициента вариации, что не есть большая проблема. Расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:

    =СТАНДОТКЛОН.Г(диапазон)/СРЗНАЧ(диапазон)

    В скобках должен быть указан диапазон данных. При необходимости используется среднее квадратическое отклонение по выборке (СТАНДОТКЛОН.В).

    Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на закладке «»:

    Изменить формат также можно, выбрав «Формат ячеек» из выпадающего списка после выделения нужной ячейки правой кнопкой мышки.

    Коэффициент вариации, в отличие от других показателей разброса значений, используется как самостоятельный и весьма информативный индикатор вариации данных. В статистике принято считать, что если коэффициент вариации менее 33%, то совокупность данных является однородной, если более 33%, то – неоднородной.

    Эта информация может быть полезна для предварительного описания данных и определения возможностей проведения дальнейшего анализа. Кроме того, коэффициент вариации, измеряемый в процентах, позволяет сравнивать степень разброса различных данных независимо от их масштаба и единиц измерений. Полезное свойство.

    В целом, с помощью Excel все, или почти все, статистические показатели рассчитываются очень просто. Если что-то непонятно, всегда можно воспользоваться окошком для поиска в Мастере функций. Ну, и Гугл в помощь.

    Легкой работы в Excel и до встречи на блоге statanaliz.info.

    Оригинал и другие статьи http://statanaliz.info/index.php/excel/formuly/37-raschet-pokazatelej-variatsii-v-excel

    Источник: http://vniioh.ru/raschet-pokazatelej-variacii-v-excel/

    Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

    Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

    Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

    Свойства дисперсии

    Свойство 1. Дисперсия постоянной величины A равна 0 (нулю).

    D(A) = 0

    Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

    D(AX) = А2 D(X)

    Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

    D(A + X) = D(X)

    Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

    D(X+Y) = D(X) + D(Y)

    Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

    D(X-Y) = D(X) + D(Y)

    Среднеквадратичное (стандартное) отклонение

    Если из дисперсии извлечь квадратный корень, получится среднеквадратичное (стандартное) отклонение (сокращенно СКО). Встречается название среднее квадратичное отклонение и сигма (от названия греческой буквы). Общая формула стандартного отклонения в математике следующая:

    На практике формула стандартного отклонения следующая:

    Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

    Расчет cреднеквадратичного (стандартного) отклонения в Excel

    Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

    Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

    Расчет коэффициента вариации в Excel

    Расчет коэффициента вариации в Excel также производится делением стандартного отклонения на среднее арифметическое:

    =СТАНДОТКЛОН.В()/СРЗНАЧ()

    Коэффициент вариации обычно выражается в процентах, поэтому ячейке с формулой можно присвоить процентный формат:

    Коэффициент осцилляции

    Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

    Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

    Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных. 

    Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

    в социальных сетях:

    Источник: https://statanaliz.info/statistica/opisanie-dannyx/dispersiya-standartnoe-otklonenie-koeffitsient-variatsii/

    Как работает стандартное отклонение в Excel

    Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

          Добрый день!

         В статье я решил рассмотреть, как работает стандартное отклонение в Excel с помощью функции СТАНДОТКЛОН. Я просто очень давно не описывал и не комментировал статистические функции, а еще просто потому что это очень полезная функция для тех, кто изучает высшую математику.

    А оказать помощь студентам – это святое, по себе знаю, как трудно она осваивается.

    В реальности функции стандартных отклонений можно использовать для определения стабильности продаваемой продукции, создания цены, корректировки или формирования ассортимента, ну и других не менее полезных анализов ваших продаж.

    В Excel используются несколько вариантов этой функции отклонения:

    • Функция СТАНДОТКЛОНА – вычисляется отклонение по выборке текстовых и логических значений. При этом ложные логические и текстовые значения формула приравнивает к 0, а 1 будут равняться только истинные логические значения;
    • Функция СТАНДОТКЛОН.В – производит оценку стандартного отклонения по выборке, при этом текстовые и логические значения игнорирует;
    • Функция СТАНДОТКЛОН.Г – делает оценку отклонения по некой генеральной совокупности и как в предыдущей функции игнорируются текстовые и логические значения;
    • Функция СТАНДОТКЛОНПА – также вычисляет по генеральной совокупности стандартное отклонение, но с учетом текстовых и логических значений. Равняться 1 будут только истинные логические значения, а ложные логические и текстовые значения будут приравнены к 0.

    Математическая теория

          Для начала немножко о теории, как математическим языком можно описать функцию стандартного отклонения для применения ее в Excel, для анализа, к примеру, данных статистики продаж, но об этом дальше. Предупреждаю сразу, буду писать очень много непонятных слов… )))), если что ниже по тексту смотрите сразу практическое применение в программе.

         Что же собственно делает стандартное отклонение? Оно производит оценку среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии. Согласитесь, звучит запутанно, но я думаю учащиеся поймут о чём собственно идет речь!

        Для начала нам нужно определить «среднеквадратическое отклонение», что бы в дальнейшем произвести расчёт «стандартного отклонения», в этом нам поможет формула:      Описать формулу возможно так: среднеквадратическое отклонение будет измеряться в тех же единицах что и измерения случайной величины и применяется при вычислении стандартной среднеарифметической ошибки, когда производятся построения доверительных интервалов, при проверке гипотез на статистику или же при анализе линейной взаимосвязи между независимыми величинами. Функцию определяют, как квадратный корень из дисперсии независимых величин.

         Теперь можно дать определение и стандартному отклонению – это анализ среднеквадратического отклонения случайной величины Х сравнительно её математической перспективы на основе несмещённой оценки её дисперсии. Формула записывается так:      Отмечу, что все две оценки предоставляются смещёнными. При общих случаях построить несмещённую оценку не является возможным. Но оценка на основе оценки несмещённой дисперсии будет состоятельной.

    Практическое воплощение в Excel

         Ну а теперь отойдём от скучной теории и на практике посмотрим, как работает функция СТАНДОТКЛОН. Я не буду рассматривать все вариации функции стандартного отклонения в Excel, достаточно и одной, но в примерах. А для примера рассмотрим, как определяется статистика стабильности продаж.

          Для начала посмотрите на орфографию функции, а она как вы видите, очень проста:

            =СТАНДОТКЛОН.Г(_число1_;_число2_; ….), где:

    • Число1, число2, … — являют собой генеральную совокупность значений и имеют только числовые значения или же ссылки на них. Формула поддерживает до 255 числовых значений.

          Теперь создадим файл примера и на его основе рассмотрим работу этой функции.

         Так как для проведения аналитических вычислений необходимо использовать не меньше трёх значений, как в принципе в любом статистическом анализе, то и я взял условно 3 периода, это может быть год, квартал, месяц или неделя. В моем случае – месяц.

    Для наибольшей достоверности рекомендую брать как можно большое количество периодов, но никак не менее трёх. Все данные в таблице очень простые для наглядности работы и функциональности формулы.

        Для начала нам необходимо посчитать среднее значение по месяцам. Будем использовать для этого функцию СРЗНАЧ и получится формула: =СРЗНАЧ(C4:E4).       Теперь собственно мы и можем найти стандартное отклонение с помощью функции СТАНДОТКЛОН.Г в значении которой нужно проставить продажи товара каждого периода.

    Получится формула следующего вида: =СТАНДОТКЛОН.Г(C4;D4;E4).      Ну вот и сделана половина дел. Следующим шагом мы формируем «Вариацию», это получается делением на среднее значение, стандартного отклонения и результат переводим в проценты.

    Получаем такую таблицу:        Ну вот основные расчёты окончены, осталось разобраться как идут продажи стабильно или нет. Возьмем как условие что отклонения в 10% это считается стабильно, от 10 до 25% это небольшие отклонения, а вот всё что выше 25% это уже не стабильно.

    Для получения результата по условиям воспользуемся логической функцией ЕСЛИ и для получения результата напишем формулу:

                    =ЕСЛИ(H4

    Источник: http://topexcel.ru/kak-rabotaet-standartnoe-otklonenie-v-excel/

    Разбираем формулы среднеквадратического отклонения и дисперсии в Excel

    Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

    Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel. 

    В данной статье мы разберем формулы  среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

    Например, у нас есть временной ряд – продажи по неделям в шт.

    Неделя12345678910
    Отгрузка, шт6107126148131014

    Сморите пример расчета здесь: среднеквадратическое отклонние и дисперсия

    Для этого временного ряда i=1, n=10, , 

    Рассмотрим формулу среднего значения:

    Неделя12345678910
    Отгрузка, шт6107126148131014

    Для нашего временного ряда определим среднее значение 

    Также для выявления тенденций помимо среднего значения представляет интерес и то,  насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

    =СРЗНАЧ(ссылка на диапазон) = 100/10=10

    2. Определим отклонение каждого значения ряда относительно среднего 

    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего  

    для первой недели = (-4)2=16

    для второй недели = 02=0

    для третей = (-3)2=9 и т.д.

    4. Рассчитаем сумму квадратов отклонений значений относительно среднего  с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

      =16+0+9+4+16+16+4+9+0+16=90

    5. , для этого  сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)2))/(n-1)

     =90/(10-1)=10

    6. Среднеквадратическое отклонение равно = корень(10)=3,2

    Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

     Скачать файл с примером

    Рассмотрим еще один показатель, который в будущем нам понадобятся – дисперсия.

    Как рассчитать дисперсию в Excel?

    Дисперсия – квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

    Рассчитаем дисперсию:  

    Скачать файл с примером 

    Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

    Точных вам прогнозов!

    Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

    • Novo Forecast Lite – автоматический расчет прогноза в Excel.
    • 4analytics – ABC-XYZ-анализ и анализ выбросов в Excel.
    • Qlik Sense Desktop и QlikView Personal Edition – BI-системы для анализа и визуализации данных.

    Тестируйте возможности платных решений:

    • Novo Forecast PRO – прогнозирование в Excel для больших массивов данных.

    Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

    Зарегистрируйтесь и скачайте решения

    Источник: https://4analytics.ru/metodi-analiza/razbiraem-formuli-srednekvadraticheskogo-otkloneniya-i-dispersii-v-excel.html

    Дисперсия и стандартное отклонение в EXCEL

    Среднеквадратическое отклонение формулы в excel. Расчет дисперсии в Microsoft Excel

    Вычислим в MS EXCEL дисперсию и стандартное отклонение выборки. Также вычислим дисперсию случайной величины, если известно ее распределение.

    Сначала рассмотрим дисперсию , затем стандартное отклонение .

    Дисперсия выборки

    Дисперсия выборки ( выборочная дисперсия, sample variance ) характеризует разброс значений в массиве относительно среднего .

    Все 3 формулы математически эквивалентны.

    Из первой формулы видно, что дисперсия выборки это сумма квадратов отклонений каждого значения в массиве от среднего , деленная на размер выборки минус 1.

    В MS EXCEL 2007 и более ранних версиях для вычисления дисперсии выборки используется функция ДИСП() , англ. название VAR, т.е. VARiance. С версии MS EXCEL 2010 рекомендуется использовать ее аналог ДИСП.В() , англ. название VARS, т.е. Sample VARiance.

    Кроме того, начиная с версии MS EXCEL 2010 присутствует функция ДИСП.Г(), англ. название VARP, т.е. Population VARiance, которая вычисляет дисперсию для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у ДИСП.В() , у ДИСП.Г() в знаменателе просто n.

    До MS EXCEL 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР() .

    Дисперсию выборки можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера ) =КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1) =(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)2)/ (СЧЁТ(Выборка)-1) – обычная формула =СУММ((Выборка -СРЗНАЧ(Выборка))2)/ (СЧЁТ(Выборка)-1 ) – формула массива

    Дисперсия выборки равна 0, только в том случае, если все значения равны между собой и, соответственно, равны среднему значению . Обычно, чем больше величина дисперсии , тем больше разброс значений в массиве.

    Дисперсия выборки является точечной оценкой дисперсии распределения случайной величины, из которой была сделана выборка . О построении доверительных интервалов при оценке дисперсии можно прочитать в статье Доверительный интервал для оценки дисперсии в MS EXCEL .

    Дисперсия случайной величины

    Чтобы вычислить дисперсию случайной величины, необходимо знать ее функцию распределения .

    Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна математическому ожиданию квадрата отклонения от среднего E(X): Var(Х)=E[(X-E(X)) 2 ]

    Если случайная величина имеет дискретное распределение , то дисперсия вычисляется по формуле:

    где x i – значение, которое может принимать случайная величина, а μ – среднее значение ( математическое ожидание случайной величины ), р(x) – вероятность, что случайная величина примет значение х.

    Если случайная величина имеет непрерывное распределение , то дисперсия вычисляется по формуле:

    где р(x) – плотность вероятности .

    Для распределений, представленных в MS EXCEL , дисперсию можно вычислить аналитически, как функцию от параметров распределения. Например, для Биномиального распределения дисперсия равна произведению его параметров: n*p*q.

    Примечание : Дисперсия, является вторым центральным моментом , обозначается D[X], VAR(х), V(x). Второй центральный момент – числовая характеристика распределения случайной величины, которая является мерой разброса случайной величины относительно математического ожидания .

    Примечание : О распределениях в MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL .

    Размерность дисперсии соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность дисперсии будет кг 2 . Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из дисперсии – стандартное отклонение .

    Некоторые свойства дисперсии :

    Var(Х+a)=Var(Х), где Х – случайная величина, а – константа.

    Var(aХ)=a 2 Var(X)

    Var(Х)=E[(X-E(X)) 2 ]=E[X 2 -2*X*E(X)+(E(X)) 2 ]=E(X 2 )-E(2*X*E(X))+(E(X)) 2 =E(X 2 )-2*E(X)*E(X)+(E(X)) 2 =E(X 2 )-(E(X)) 2

    Это свойство дисперсии используется в статье про линейную регрессию .

    Var(Х+Y)=Var(Х) + Var(Y) + 2*Cov(Х;Y), где Х и Y – случайные величины, Cov(Х;Y) – ковариация этих случайных величин.

    Если случайные величины независимы (independent), то их ковариация равна 0, и, следовательно, Var(Х+Y)=Var(Х)+Var(Y). Это свойство дисперсии используется при выводе стандартной ошибки среднего .

    Покажем, что для независимых величин Var(Х-Y)=Var(Х+Y). Действительно, Var(Х-Y)= Var(Х-Y)= Var(Х+(-Y))= Var(Х)+Var(-Y)= Var(Х)+Var(-Y)= Var(Х)+(-1) 2 Var(Y)= Var(Х)+Var(Y)= Var(Х+Y). Это свойство дисперсии используется для построения доверительного интервала для разницы 2х средних .

    Стандартное отклонение выборки

    Стандартное отклонение выборки – это мера того, насколько широко разбросаны значения в выборке относительно их среднего .

    По определению, стандартное отклонение равно квадратному корню из дисперсии :

    Стандартное отклонение не учитывает величину значений в выборке , а только степень рассеивания значений вокруг их среднего . Чтобы проиллюстрировать это приведем пример.

    Вычислим стандартное отклонение для 2-х выборок: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у выборок существенно отличается. Для таких случаев используется Коэффициент вариации (Coefficient of Variation, CV) – отношение Стандартного отклонения к среднему арифметическому , выраженного в процентах.

    В MS EXCEL 2007 и более ранних версиях для вычисления Стандартного отклонения выборки используется функция =СТАНДОТКЛОН() , англ. название STDEV, т.е. STandard DEViation. С версии MS EXCEL 2010 рекомендуется использовать ее аналог =СТАНДОТКЛОН.В() , англ. название STDEV.S, т.е. Sample STandard DEViation.

    Кроме того, начиная с версии MS EXCEL 2010 присутствует функция СТАНДОТКЛОН.Г() , англ. название STDEV.P, т.е. Population STandard DEViation, которая вычисляет стандартное отклонение для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у СТАНДОТКЛОН.В() , у СТАНДОТКЛОН.Г() в знаменателе просто n.

    Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера ) =КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)) =КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)2)/(СЧЁТ(Выборка)-1))

    Другие меры разброса

    Функция КВАДРОТКЛ() вычисляет с умму квадратов отклонений значений от их среднего . Эта функция вернет тот же результат, что и формула =ДИСП.Г( Выборка )*СЧЁТ( Выборка ) , где Выборка – ссылка на диапазон, содержащий массив значений выборки ( именованный диапазон ). Вычисления в функции КВАДРОТКЛ() производятся по формуле:

    Функция СРОТКЛ() является также мерой разброса множества данных. Функция СРОТКЛ() вычисляет среднее абсолютных значений отклонений значений от среднего .  Эта функция вернет тот же результат, что и формула =СУММПРОИЗВ(ABS(Выборка-СРЗНАЧ(Выборка)))/СЧЁТ(Выборка) , где Выборка – ссылка на диапазон, содержащий массив значений выборки.

    Вычисления в функции СРОТКЛ () производятся по формуле:

    Источник: https://excel2.ru/articles/dispersiya-i-standartnoe-otklonenie-v-ms-excel

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.